BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24964343)

  • 1. Pattern recognition of HER-1 in biological fluids using stochastic sensing.
    Stefan-van Staden RI; Moldoveanu I; Gavan CS
    J Enzyme Inhib Med Chem; 2015 Apr; 30(2):283-5. PubMed ID: 24964343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern recognition of neurotransmitters using multimode sensing.
    Stefan-van Staden RI; Moldoveanu I; van Staden JF
    J Neurosci Methods; 2014 May; 229():1-7. PubMed ID: 24680958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular recognition of HER-1 in whole-blood samples.
    Moldoveanu I; Stanciu Gavan C; Stefan-van Staden RI
    J Mol Recognit; 2014 Nov; 27(11):653-8. PubMed ID: 25277089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern recognition of neuron specific enolase and carcinoembryonic antigen in whole blood samples.
    Stefan-van Staden RI; Comnea-Stancu IR; Surdu-Bob CC; Stanciu-Gavan C
    J Mol Recognit; 2015 Feb; 28(2):103-7. PubMed ID: 25604868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern recognition of estradiol, testosterone and dihydrotestosterone in children's saliva samples using stochastic microsensors.
    Stefan-van Staden RI; Gugoaşă LA; Calenic B; Legler J
    Sci Rep; 2014 Jul; 4():5579. PubMed ID: 24993181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern recognition of 8-hydroxy-2'-deoxyguanosine in biological fluids.
    Stefan-van Staden RI; Balahura LR; Gugoasa LA; van Staden JF; Aboul-Enein HY; Rosu MC; Pruneanu SM
    Anal Bioanal Chem; 2018 Jan; 410(1):115-121. PubMed ID: 29067480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials.
    Stefan-van Staden RI; Gugoasa LA; Biris AR
    Nanoscale; 2015 Sep; 7(36):14848-53. PubMed ID: 26183340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids.
    Lee CJ; Yang J
    Anal Biochem; 2006 Dec; 359(1):124-31. PubMed ID: 17046708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen.
    Stefan-van Staden RI; Comnea-Stancu IR; Surdu-Bob CC; Badulescu M
    Nanoscale; 2015 Oct; 7(38):15689-94. PubMed ID: 26350155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D stochastic microsensors for molecular recognition and determination of heregulin-α in biological samples.
    Stefan-van Staden RI; Negut CC; Gheorghe SS; Ciorîță A
    Anal Bioanal Chem; 2021 May; 413(13):3487-3492. PubMed ID: 33763747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Screening of Tissue Samples for Glycogen.
    Stefan-van Staden RI; Diaconeasa AG; Stanciu-Gavan C
    J Pharm Biomed Anal; 2017 Feb; 135():16-19. PubMed ID: 27987391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimode sensors as new tools for molecular recognition of testosterone, dihydrotestosterone and estradiol in children's saliva.
    Gugoasa LA; Stefan-van Staden RI; Calenic B; Legler J
    J Mol Recognit; 2015 Jan; 28(1):10-9. PubMed ID: 26268367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Recognition and Quantification of HER-3, HER-4 and HRG-α in Whole Blood and Tissue Samples Using Stochastic Sensors.
    Stefan-van Staden RI; Gheorghe DC
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic microsensors based on modified graphene for pattern recognition of maspin in biological samples.
    Stefan-van Staden RI; Bogea IM; Ilie-Mihai RM; Gheorghe DC; Coroş M; Pruneanu SM
    Anal Bioanal Chem; 2022 May; 414(12):3667-3673. PubMed ID: 35266021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition of IL-8, IL-10, IL-12, and IL-15 in biological fluids using phthalocyanine-based stochastic sensors.
    Stefan-van Staden RI; Ilie-Mihai RM; Gugoasa LA; Bilasco A; Visan CA; Streinu-Cercel A
    Anal Bioanal Chem; 2018 Nov; 410(29):7723-7737. PubMed ID: 30255322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic microsensors for the assessment of DNA damage in cancer.
    Stefan-van Staden RI; Balahura LR; Cioates-Negut C; Aboul-Enein HY
    Anal Biochem; 2020 Sep; 605():113839. PubMed ID: 32702437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural polysaccharides as active biomaterials in nanostructured films for sensing.
    Eiras C; Santos AC; Zampa MF; de Brito AC; Leopoldo Constantino CJ; Zucolotto V; dos Santos JR
    J Biomater Sci Polym Ed; 2010; 21(11):1533-43. PubMed ID: 20537239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioanalysis of pipecolic acid with stochastic and potentiometric microsensors.
    Stefan-van Staden RI; Moldoveanu I; Sava DF; Kapnissi-Christodoulou C; van Staden JF
    Chirality; 2013 Feb; 25(2):114-8. PubMed ID: 23180678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins.
    Zhang Y; Chen P; Liu M
    Chemistry; 2008; 14(6):1793-803. PubMed ID: 18064623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and biological sensors based on metal oxide nanostructures.
    Hahn YB; Ahmad R; Tripathy N
    Chem Commun (Camb); 2012 Oct; 48(84):10369-85. PubMed ID: 22945035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.