These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24964766)

  • 1. Improving catalase-based propelled motor endurance by enzyme encapsulation.
    Simmchen J; Baeza A; Ruiz-Molina D; Vallet-Regí M
    Nanoscale; 2014 Aug; 6(15):8907-13. PubMed ID: 24964766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propelled chemically-powered plant-tissue biomotors.
    Gu Y; Sattayasamitsathit S; Kaufmann K; Vazquez-Duhalt R; Gao W; Wang C; Wang J
    Chem Commun (Camb); 2013 Aug; 49(66):7307-9. PubMed ID: 23851705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor.
    Simmchen J; Baeza A; Ruiz D; Esplandiu MJ; Vallet-Regí M
    Small; 2012 Jul; 8(13):2053-9. PubMed ID: 22511610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing.
    Zhang X; Chen C; Wu J; Ju H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13581-13588. PubMed ID: 30888785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loading PEG-catalase into filamentous and spherical polymer nanocarriers.
    Simone EA; Dziubla TD; Arguiri E; Vardon V; Shuvaev VV; Christofidou-Solomidou M; Muzykantov VR
    Pharm Res; 2009 Jan; 26(1):250-60. PubMed ID: 18956141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bio-catalytically driven Janus mesoporous silica cluster motor with magnetic guidance.
    Ma X; Sanchez S
    Chem Commun (Camb); 2015 Mar; 51(25):5467-70. PubMed ID: 25407318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing mutually encapsulating materials for versatile syntheses of multilayer metal-silica-polymer hybrid nanostructures.
    Zhu L; Wang H; Shen X; Chen L; Wang Y; Chen H
    Small; 2012 Jun; 8(12):1857-62. PubMed ID: 22467175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically powered micro- and nanomotors.
    Sánchez S; Soler L; Katuri J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1414-44. PubMed ID: 25504117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion of Enzyme-Powered Microshell Motors.
    Chen C; He Z; Wu J; Zhang X; Xia Q; Ju H
    Chem Asian J; 2019 Jul; 14(14):2491-2496. PubMed ID: 31087617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-based, high-yielding, and fast separation of different charged organics in water.
    Xuan M; Lin X; Shao J; Dai L; He Q
    Chemphyschem; 2015 Jan; 16(1):147-51. PubMed ID: 25413002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media.
    Cao W; Huang R; Qi W; Su R; He Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):465-73. PubMed ID: 25478712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of enzymatically active micrometer protein-capsules.
    Schakowski KM; Elm C; Linders J; Kirsch M
    Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):606-613. PubMed ID: 34559040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.
    Wu Y; Si T; Lin X; He Q
    Chem Commun (Camb); 2015 Jan; 51(3):511-4. PubMed ID: 25409875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor.
    Abdelmohsen LK; Nijemeisland M; Pawar GM; Janssen GJ; Nolte RJ; van Hest JC; Wilson DA
    ACS Nano; 2016 Feb; 10(2):2652-60. PubMed ID: 26811982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.
    Shi J; Zhang S; Wang X; Jiang Z
    Chem Commun (Camb); 2014 Oct; 50(83):12500-3. PubMed ID: 25189769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.
    Wang Y; Hernandez RM; Bartlett DJ; Bingham JM; Kline TR; Sen A; Mallouk TE
    Langmuir; 2006 Dec; 22(25):10451-6. PubMed ID: 17129015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving of catalase stability properties by encapsulation in alginate/Fe3O4 magnetic composite beads for enzymatic removal of H2O2.
    Doğaç YI; Çinar M; Teke M
    Prep Biochem Biotechnol; 2015; 45(2):144-57. PubMed ID: 24679144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble.
    Pantarotto D; Browne WR; Feringa BL
    Chem Commun (Camb); 2008 Apr; (13):1533-5. PubMed ID: 18354790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-powered motility in buoyant organoclay/DNA protocells.
    Kumar BVVSP; Patil AJ; Mann S
    Nat Chem; 2018 Nov; 10(11):1154-1163. PubMed ID: 30127511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.