BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24964919)

  • 1. A DFT-based model for calculating solvolytic reactivity. The nucleofugality of aliphatic carboxylates in terms of Nf parameters.
    Denegri B; Matić M; Kronja O
    Org Biomol Chem; 2014 Aug; 12(30):5698-709. PubMed ID: 24964919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DFT/PCM-based methodology for predicting solvolytic reactivities of organic carbonates.
    Matić M; Denegri B
    Org Biomol Chem; 2018 Jul; 16(25):4665-4674. PubMed ID: 29888370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Method for estimating S(N)1 rate constants: solvolytic reactivity of benzoates.
    Matić M; Denegri B; Kronja O
    J Org Chem; 2012 Oct; 77(20):8986-98. PubMed ID: 22973993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the solvolyses of benzhydryl derivatives: basis for the construction of a comprehensive nucleofugality scale.
    Denegri B; Streiter A; Jurić S; Ofial AR; Kronja O; Mayr H
    Chemistry; 2006 Feb; 12(6):1648-56. PubMed ID: 16320366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvolytic Behavior of Aryl and Alkyl Carbonates. Impact of the Intrinsic Barrier on Relative Reactivities of Leaving Groups.
    Matić M; Katić M; Denegri B; Kronja O
    J Org Chem; 2017 Aug; 82(15):7820-7831. PubMed ID: 28686444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic nucleofugality scale within the framework of density functional reactivity theory.
    Broeckaert L; Moens J; Roos G; De Proft F; Geerlings P
    J Phys Chem A; 2008 Nov; 112(47):12164-71. PubMed ID: 18975874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical guide for estimating rates of heterolysis reactions.
    Streidl N; Denegri B; Kronja O; Mayr H
    Acc Chem Res; 2010 Dec; 43(12):1537-49. PubMed ID: 21082867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical prediction of pKa values of seleninic, selenenic, sulfinic, and carboxylic acids by quantum-chemical methods.
    Ali ST; Karamat S; Kóňa J; Fabian WM
    J Phys Chem A; 2010 Dec; 114(47):12470-8. PubMed ID: 21050024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvolytic reactivity of heptafluorobutyrates and trifluoroacetates.
    Denegri B; Kronja O
    J Org Chem; 2009 Aug; 74(16):5927-33. PubMed ID: 19591442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleofugality of phenyl and methyl carbonates.
    Denegri B; Kronja O
    J Org Chem; 2007 Oct; 72(22):8427-33. PubMed ID: 17915926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the leaving group and solvent combination on the LFER reaction constants.
    Matić M; Jurić S; Denegri B; Kronja O
    Int J Mol Sci; 2012; 13(2):2012-2024. PubMed ID: 22408434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids.
    Kolehmainen E; Tuppurainen K; Lanina SA; Sievänen E; Laihia K; Boyarskiy VP; Nikiforov VA; Zhesko TE
    Chemosphere; 2006 Jan; 62(3):368-74. PubMed ID: 15992857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of the mechanism and dynamics of intramolecular coherent resonance energy transfer in soft molecules: a case study of dithia-anthracenophane.
    Yang L; Caprasecca S; Mennucci B; Jang S
    J Am Chem Soc; 2010 Dec; 132(47):16911-21. PubMed ID: 21050006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data.
    Dokić J; Gothe M; Wirth J; Peters MV; Schwarz J; Hecht S; Saalfrank P
    J Phys Chem A; 2009 Jun; 113(24):6763-73. PubMed ID: 19453149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanics study and Monte Carlo simulation on the hydrolytic deamination of 5-methylcytosine glycol.
    Chen ZQ; Zhang CH; Kim CK; Xue Y
    Phys Chem Chem Phys; 2011 Apr; 13(14):6471-83. PubMed ID: 21380473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic (FT-IR, FT-Raman) investigations and quantum chemical calculations of 4-hydroxy-2-oxo-1,2-dihydroquinoline-7-carboxylic acid.
    Ulahannan RT; Panicker CY; Varghese HT; Van Alsenoy C; Musiol R; Jampilek J; Anto PL
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():404-14. PubMed ID: 24287049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited state dynamics of zinc and aluminum phthalocyanine carboxylates.
    Idowu M; Ogunsipe A; Nyokong T
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):995-9. PubMed ID: 17324619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT/TD-DFT study of solvent effect as well the substituents influence on the different features of TPP derivatives for PDT application.
    Dulski M; Kempa M; Kozub P; Wójcik J; Rojkiewicz M; Kuś P; Szurko A; Ratuszna A; Wrzalik R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 104():315-27. PubMed ID: 23274259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling temperature dependency of ionization constants of amino acids and carboxylic acids.
    Gupta M; da Silva EF; Svendsen HF
    J Phys Chem B; 2013 Jun; 117(25):7695-709. PubMed ID: 23713904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.