BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24965270)

  • 1. Development of glassy step-growth thiol-vinyl sulfone polymer networks.
    Podgórski M; Chatani S; Bowman CN
    Macromol Rapid Commun; 2014 Sep; 35(17):1497-502. PubMed ID: 24965270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact properties of thiol-ene networks.
    McNair OD; Janisse AP; Krzeminski DE; Brent DE; Gould TE; Rawlins JW; Savin DA
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11004-13. PubMed ID: 24175583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Tg Thiol-Click Thermoset Networks via the Thiol-Maleimide Michael Addition.
    Parker S; Reit R; Abitz H; Ellson G; Yang K; Lund B; Voit WE
    Macromol Rapid Commun; 2016 Jul; 37(13):1027-32. PubMed ID: 27168131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance.
    Podgórski M; Becka E; Chatani S; Claudino M; Bowman CN
    Polym Chem; 2015; 6(12):2234-2240. PubMed ID: 25893009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dental Restorative Materials Based on Thiol-Michael Photopolymerization.
    Huang S; Podgórski M; Zhang X; Sinha J; Claudino M; Stansbury JW; Bowman CN
    J Dent Res; 2018 May; 97(5):530-536. PubMed ID: 29439642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Grafting to" of RAFTed Responsive Polymers to Glass Substrates by Thiol-Ene and Critical Comparison to Thiol-Gold Coupling.
    Biggs CI; Walker M; Gibson MI
    Biomacromolecules; 2016 Aug; 17(8):2626-33. PubMed ID: 27409356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core/shell protein-reactive nanogels via a combination of RAFT polymerization and vinyl sulfone postmodification.
    Vanparijs N; Nuhn L; Paluck SJ; Kokkinopoulou M; Lieberwirth I; Maynard HD; De Geest BG
    Nanomedicine (Lond); 2016 Oct; 11(20):2631-2645. PubMed ID: 27628768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat- and Light-Responsive Materials Through Pairing Dynamic Thiol-Michael and Coumarin Chemistry.
    Chakma P; Wanasinghe SV; Morley CN; Francesconi SC; Saito K; Sparks JL; Konkolewicz D
    Macromol Rapid Commun; 2021 Sep; 42(18):e2100070. PubMed ID: 33960058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-functionalized nanogels as reactive plasticizers for crosslinked polymer networks.
    Saraswathy M; Stansbury JW; Nair DP
    J Mech Behav Biomed Mater; 2017 Oct; 74():296-303. PubMed ID: 28648989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adequate Reducing Conditions Enable Conjugation of Oxidized Peptides to Polymers by One-Pot Thiol Click Chemistry.
    Tallec G; Loh C; Liberelle B; Garcia-Ac A; Duy SV; Sauvé S; Banquy X; Murschel F; De Crescenzo G
    Bioconjug Chem; 2018 Nov; 29(11):3866-3876. PubMed ID: 30350572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinated Polymers via Para-Fluoro-Thiol and Thiol-Bromo Click Step Growth Polymerization.
    Zhao T; Beyer VP; Becer CR
    Macromol Rapid Commun; 2020 Nov; 41(22):e2000409. PubMed ID: 32989854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple shape memory polymers based on laminates formed from thiol-click chemistry based polymerizations.
    Podgórski M; Wang C; Bowman CN
    Soft Matter; 2015 Sep; 11(34):6852-8. PubMed ID: 26234205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Click Step-Growth Polymerization and
    Worch JC; Dove AP
    Acc Chem Res; 2022 Sep; 55(17):2355-2369. PubMed ID: 36006902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Incorporation of Ionic Liquid into Ion-Conductive Networks via Thiol-Ene Photopolymerization.
    Tibbits AC; Yan YS; Kloxin CJ
    Macromol Rapid Commun; 2017 Jul; 38(13):. PubMed ID: 28470841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping of Thiol Terminated Acrylate Polymers with Divinyl Sulfone to Generate Well-Defined Semi-Telechelic Michael Acceptor Polymers.
    Grover GN; Alconcel SN; Matsumoto NM; Maynard HD
    Macromolecules; 2009 Oct; 42(20):7657-7663. PubMed ID: 21552430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Reactions between Water-Soluble Trialkylphosphines and Thiol Alkylating Reagents: Implications for Protein-Conjugation Reactions.
    Kantner T; Watts AG
    Bioconjug Chem; 2016 Oct; 27(10):2400-2406. PubMed ID: 27602944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vinyl sulfone functionalization: a feasible approach for the study of the lectin-carbohydrate interactions.
    Lopez-Jaramillo FJ; Ortega-Muñoz M; Megia-Fernandez A; Hernandez-Mateo F; Santoyo-Gonzalez F
    Bioconjug Chem; 2012 Apr; 23(4):846-55. PubMed ID: 22432968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphonium Tetraphenylborate: A Photocatalyst for Visible-Light-Induced, Nucleophile-Initiated Thiol-Michael Addition Photopolymerization.
    Zhang X; Wang X; Chatani S; Bowman CN
    ACS Macro Lett; 2021 Jan; 10(1):84-89. PubMed ID: 35548987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Network Formation of Tough and Biocompatible Thiol-yne Based Photopolymers.
    Oesterreicher A; Gorsche C; Ayalur-Karunakaran S; Moser A; Edler M; Pinter G; Schlögl S; Liska R; Griesser T
    Macromol Rapid Commun; 2016 Oct; 37(20):1701-1706. PubMed ID: 27573508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vinyl sulfone-modified carbohydrates: Michael acceptors and 2π partners for the synthesis of functionalized sugars and enantiomerically pure carbocycles and heterocycles.
    Bose A; Pathak T
    Adv Carbohydr Chem Biochem; 2020; 78():1-134. PubMed ID: 33276909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.