BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24965587)

  • 1. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes.
    Musa-Aziz R; Occhipinti R; Boron WF
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C791-813. PubMed ID: 24965587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes.
    Musa-Aziz R; Occhipinti R; Boron WF
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C814-40. PubMed ID: 24965590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes.
    Occhipinti R; Musa-Aziz R; Boron WF
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C841-58. PubMed ID: 24965589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How carbonic anhydrases and pH buffers facilitate the movement of carbon dioxide through biological membranes. Focus on "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes"; "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes"; and "Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes".
    Delpire E
    Am J Physiol Cell Physiol; 2014 Nov; 307(9):C788-90. PubMed ID: 24965588
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.
    Nakhoul NL; Davis BA; Romero MF; Boron WF
    Am J Physiol; 1998 Feb; 274(2):C543-8. PubMed ID: 9486145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres.
    Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G
    J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO
    Moss FJ; Boron WF
    J Physiol; 2020 Dec; 598(24):5821-5856. PubMed ID: 32969493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO
    Rasmussen JK; Boedtkjer E
    J Cereb Blood Flow Metab; 2018 Mar; 38(3):492-505. PubMed ID: 28318362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes.
    Lu J; Daly CM; Parker MD; Gill HS; Piermarini PM; Pelletier MF; Boron WF
    J Biol Chem; 2006 Jul; 281(28):19241-50. PubMed ID: 16687407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanisms of intracellular pH regulation in the nervous system.
    Schlue WR; Deitmer JW
    Ciba Found Symp; 1988; 139():47-69. PubMed ID: 2849530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular carbonic anhydrase activity sensitizes cancer cell pH signaling to dynamic changes in CO2 partial pressure.
    Hulikova A; Aveyard N; Harris AL; Vaughan-Jones RD; Swietach P
    J Biol Chem; 2014 Sep; 289(37):25418-30. PubMed ID: 25059669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of basolateral CO2/HCO3- on intracellular pH regulation in the rabbit S3 proximal tubule.
    Nakhoul NL; Chen LK; Boron WF
    J Gen Physiol; 1993 Dec; 102(6):1171-205. PubMed ID: 8133244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly.
    Klier M; Jamali S; Ames S; Schneider HP; Becker HM; Deitmer JW
    FEBS J; 2016 Jan; 283(1):191-200. PubMed ID: 26470855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres.
    Kaila K; Saarikoski J; Voipio J
    J Physiol; 1990 Aug; 427():241-60. PubMed ID: 1698980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPI-anchored carbonic anhydrase IV displays both intra- and extracellular activity in cRNA-injected oocytes and in mouse neurons.
    Schneider HP; Alt MD; Klier M; Spiess A; Andes FT; Waheed A; Sly WS; Becker HM; Deitmer JW
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1494-9. PubMed ID: 23297198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons II. Base influx.
    Hogan EM; Cohen MA; Boron WF
    J Gen Physiol; 1995 Nov; 106(5):845-62. PubMed ID: 8648295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones.
    Thomas RC
    J Physiol; 1976 Mar; 255(3):715-35. PubMed ID: 4614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous measurement of intracellular and extracellular carbonic anhydrase activity in intact muscle fibres.
    Saarikoski J; Kaila K
    Pflugers Arch; 1992 Jul; 421(4):357-63. PubMed ID: 1408660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa.
    Mizumori M; Meyerowitz J; Takeuchi T; Lim S; Lee P; Supuran CT; Guth PH; Engel E; Kaunitz JD; Akiba Y
    J Physiol; 2006 Jun; 573(Pt 3):827-42. PubMed ID: 16556652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apical and basolateral CO2-HCO3- permeability in cultured bovine corneal endothelial cells.
    Bonanno JA; Guan Y; Jelamskii S; Kang XJ
    Am J Physiol; 1999 Sep; 277(3):C545-53. PubMed ID: 10484341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.