These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24965589)
1. Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes. Occhipinti R; Musa-Aziz R; Boron WF Am J Physiol Cell Physiol; 2014 Nov; 307(9):C841-58. PubMed ID: 24965589 [TBL] [Abstract][Full Text] [Related]
2. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes. Musa-Aziz R; Occhipinti R; Boron WF Am J Physiol Cell Physiol; 2014 Nov; 307(9):C814-40. PubMed ID: 24965590 [TBL] [Abstract][Full Text] [Related]
3. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes. Musa-Aziz R; Occhipinti R; Boron WF Am J Physiol Cell Physiol; 2014 Nov; 307(9):C791-813. PubMed ID: 24965587 [TBL] [Abstract][Full Text] [Related]
4. How carbonic anhydrases and pH buffers facilitate the movement of carbon dioxide through biological membranes. Focus on "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes"; "Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes"; and "Evidence from mathematical modeling that carbonic anhydrase II and IV enhance CO2 fluxes across Xenopus oocyte plasma membranes". Delpire E Am J Physiol Cell Physiol; 2014 Nov; 307(9):C788-90. PubMed ID: 24965588 [No Abstract] [Full Text] [Related]
5. Effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes. Nakhoul NL; Davis BA; Romero MF; Boron WF Am J Physiol; 1998 Feb; 274(2):C543-8. PubMed ID: 9486145 [TBL] [Abstract][Full Text] [Related]
6. Extracellular carbonic anhydrase activity facilitates lactic acid transport in rat skeletal muscle fibres. Wetzel P; Hasse A; Papadopoulos S; Voipio J; Kaila K; Gros G J Physiol; 2001 Mar; 531(Pt 3):743-56. PubMed ID: 11251055 [TBL] [Abstract][Full Text] [Related]
7. A reaction-diffusion model of CO2 influx into an oocyte. Somersalo E; Occhipinti R; Boron WF; Calvetti D J Theor Biol; 2012 Sep; 309():185-203. PubMed ID: 22728674 [TBL] [Abstract][Full Text] [Related]
8. Carbonic anhydrase inhibitors modify intracellular pH transients and contractions of rat middle cerebral arteries during CO Rasmussen JK; Boedtkjer E J Cereb Blood Flow Metab; 2018 Mar; 38(3):492-505. PubMed ID: 28318362 [TBL] [Abstract][Full Text] [Related]
9. Carbonic anhydrases enhance activity of endogenous Na-H exchangers and not the electrogenic Na/HCO Moss FJ; Boron WF J Physiol; 2020 Dec; 598(24):5821-5856. PubMed ID: 32969493 [TBL] [Abstract][Full Text] [Related]
10. Ciliary Motility Decreased by a CO Okamoto S; Yasuda M; Kawaguchi K; Yasuoka K; Kikukawa Y; Asano S; Tsujii T; Inoue S; Amagase K; Inui TA; Hirano S; Inui T; Marunaka Y; Nakahari T Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201753 [TBL] [Abstract][Full Text] [Related]
11. Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters. Klier M; Andes FT; Deitmer JW; Becker HM J Biol Chem; 2014 Jan; 289(5):2765-75. PubMed ID: 24338019 [TBL] [Abstract][Full Text] [Related]
12. GPI-anchored carbonic anhydrase IV displays both intra- and extracellular activity in cRNA-injected oocytes and in mouse neurons. Schneider HP; Alt MD; Klier M; Spiess A; Andes FT; Waheed A; Sly WS; Becker HM; Deitmer JW Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1494-9. PubMed ID: 23297198 [TBL] [Abstract][Full Text] [Related]
13. Intracellular carbonic anhydrase activity sensitizes cancer cell pH signaling to dynamic changes in CO2 partial pressure. Hulikova A; Aveyard N; Harris AL; Vaughan-Jones RD; Swietach P J Biol Chem; 2014 Sep; 289(37):25418-30. PubMed ID: 25059669 [TBL] [Abstract][Full Text] [Related]
14. Apical and basolateral CO2-HCO3- permeability in cultured bovine corneal endothelial cells. Bonanno JA; Guan Y; Jelamskii S; Kang XJ Am J Physiol; 1999 Sep; 277(3):C545-53. PubMed ID: 10484341 [TBL] [Abstract][Full Text] [Related]
16. Effect of acetazolamide on intracellular pH and bicarbonate transport in bovine corneal endothelium. Bonanno JA; Srinivas SP; Brown M Exp Eye Res; 1995 Apr; 60(4):425-34. PubMed ID: 7789422 [TBL] [Abstract][Full Text] [Related]
17. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. Thomas RC J Physiol; 1976 Mar; 255(3):715-35. PubMed ID: 4614 [TBL] [Abstract][Full Text] [Related]
19. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly. Klier M; Jamali S; Ames S; Schneider HP; Becker HM; Deitmer JW FEBS J; 2016 Jan; 283(1):191-200. PubMed ID: 26470855 [TBL] [Abstract][Full Text] [Related]
20. Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. Lu J; Daly CM; Parker MD; Gill HS; Piermarini PM; Pelletier MF; Boron WF J Biol Chem; 2006 Jul; 281(28):19241-50. PubMed ID: 16687407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]