These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24966116)

  • 1. Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis.
    Gilis M; Meibom A; Domart-Coulon I; Grauby O; Stolarski J; Baronnet A
    J Morphol; 2014 Dec; 275(12):1349-65. PubMed ID: 24966116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology, microstructure, crystallography, and chemistry of distinct CaCO3 deposits formed by early recruits of the scleractinian coral Pocillopora damicornis.
    Gilis M; Meibom A; Alexander D; Grauby O; Stolarski J; Baronnet A
    J Morphol; 2015 Oct; 276(10):1146-56. PubMed ID: 26193820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale.
    Cuif JP; Dauphin Y
    J Struct Biol; 2005 Jun; 150(3):319-31. PubMed ID: 15890280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minerals in the pre-settled coral Stylophora pistillata crystallize via protein and ion changes.
    Akiva A; Neder M; Kahil K; Gavriel R; Pinkas I; Goobes G; Mass T
    Nat Commun; 2018 May; 9(1):1880. PubMed ID: 29760444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineral formation in the primary polyps of pocilloporoid corals.
    Neder M; Laissue PP; Akiva A; Akkaynak D; Albéric M; Spaeker O; Politi Y; Pinkas I; Mass T
    Acta Biomater; 2019 Sep; 96():631-645. PubMed ID: 31302296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Needle-like grains across growth lines in the coral skeleton of Porites lobata.
    Motai S; Nagai T; Sowa K; Watanabe T; Sakamoto N; Yurimoto H; Kawano J
    J Struct Biol; 2012 Dec; 180(3):389-93. PubMed ID: 23041294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.
    Higuchi T; Fujimura H; Yuyama I; Harii S; Agostini S; Oomori T
    PLoS One; 2014; 9(3):e91021. PubMed ID: 24609012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of the skeletal matrix of the massive coral, Porites australiensis - The saccharide moieties and their localization.
    Takeuchi T; Plasseraud L; Ziegler-Devin I; Brosse N; Shinzato C; Satoh N; Marin F
    J Struct Biol; 2018 Sep; 203(3):219-229. PubMed ID: 29859330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cretaceous scleractinian coral with a calcitic skeleton.
    Stolarski J; Meibom A; Przenioslo R; Mazur M
    Science; 2007 Oct; 318(5847):92-4. PubMed ID: 17916731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis.
    Mass T; Putnam HM; Drake JL; Zelzion E; Gates RD; Bhattacharya D; Falkowski PG
    Proc Biol Sci; 2016 Apr; 283(1829):. PubMed ID: 27122561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Proteomics of Octocoral and Scleractinian Skeletomes and the Evolution of Coral Calcification.
    Conci N; Lehmann M; Vargas S; Wörheide G
    Genome Biol Evol; 2020 Sep; 12(9):1623-1635. PubMed ID: 32761183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modern scleractinian coral with a two-component calcite-aragonite skeleton.
    Stolarski J; Coronado I; Murphy JG; Kitahara MV; Janiszewska K; Mazur M; Gothmann AM; Bouvier AS; Marin-Carbonne J; Taylor ML; Quattrini AM; McFadden CS; Higgins JA; Robinson LF; Meibom A
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33323482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchically structured scleractinian coral biocrystals.
    Przeniosło R; Stolarski J; Mazur M; Brunelli M
    J Struct Biol; 2008 Jan; 161(1):74-82. PubMed ID: 17998166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous calcium carbonate particles form coral skeletons.
    Mass T; Giuffre AJ; Sun CY; Stifler CA; Frazier MJ; Neder M; Tamura N; Stan CV; Marcus MA; Gilbert PUPA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7670-E7678. PubMed ID: 28847944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coral biomineralization: A focus on intra-skeletal organic matrix and calcification.
    Falini G; Fermani S; Goffredo S
    Semin Cell Dev Biol; 2015 Oct; 46():17-26. PubMed ID: 26344100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological control of aragonite formation in stony corals.
    Von Euw S; Zhang Q; Manichev V; Murali N; Gross J; Feldman LC; Gustafsson T; Flach C; Mendelsohn R; Falkowski PG
    Science; 2017 Jun; 356(6341):933-938. PubMed ID: 28572387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.
    Goffredo S; Vergni P; Reggi M; Caroselli E; Sparla F; Levy O; Dubinsky Z; Falini G
    PLoS One; 2011; 6(7):e22338. PubMed ID: 21799830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion elements incorporation into corals skeletons: Experimental approach for biomineralization and paleo-proxies.
    Ram S; Erez J
    Proc Natl Acad Sci U S A; 2023 Nov; 120(45):e2306627120. PubMed ID: 37917794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis.
    Domart-Coulon IJ; Elbert DC; Scully EP; Calimlim PS; Ostrander GK
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11885-90. PubMed ID: 11593000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Visualization of Biomineral Formation in Coral Proto-Polyps.
    Mass T; Drake JL; Heddleston JM; Falkowski PG
    Curr Biol; 2017 Oct; 27(20):3191-3196.e3. PubMed ID: 29033329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.