These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24966312)

  • 1. Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems.
    Vasseur DA; Fox JW; Gonzalez A; Adrian R; Beisner BE; Helmus MR; Johnson C; Kratina P; Kremer C; de Mazancourt C; Miller E; Nelson WA; Paterson M; Rusak JA; Shurin JB; Steiner CF
    Proc Biol Sci; 2014 Aug; 281(1788):20140633. PubMed ID: 24966312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species portfolio effects dominate seasonal zooplankton stabilization within a large temperate lake.
    O'Connor RF; McMeans BC; Rooney N; Guzzo MM; Young JD; McCann KS
    Ecology; 2023 Feb; 104(2):e3889. PubMed ID: 36208063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of scale-specific community dynamics using wavelets.
    Keitt TH; Fischer J
    Ecology; 2006 Nov; 87(11):2895-904. PubMed ID: 17168033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersal promotes compensatory dynamics and stability in forced metacommunities.
    Steiner CF; Stockwell RD; Kalaimani V; Aqel Z
    Am Nat; 2011 Aug; 178(2):159-70. PubMed ID: 21750380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory dynamics stabilize aggregate community properties in response to multiple types of perturbations.
    Brown BL; Downing AL; Leibold MA
    Ecology; 2016 Aug; 97(8):2021-2033. PubMed ID: 27859207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses.
    Starks E; Cooper R; Leavitt PR; Wissel B
    Glob Chang Biol; 2014 Apr; 20(4):1032-42. PubMed ID: 23960001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes.
    Berggren M; Ziegler SE; St-Gelais NF; Beisner BE; Del Giorgio PA
    Ecology; 2014 Jul; 95(7):1947-59. PubMed ID: 25163126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes.
    Gerten D; Adrian R
    ScientificWorldJournal; 2002 Mar; 2():586-606. PubMed ID: 12805986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study.
    Simões NR; Lansac-Tôha FA; Velho LF; Bonecker CC
    Rev Biol Trop; 2012 Dec; 60(4):1819-36. PubMed ID: 23342531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recovery of crustacean zooplankton from acidification depends on lake type.
    Pilotto F; Walseng B; Jensen TC; Schartau AK
    Glob Chang Biol; 2023 Nov; 29(21):6066-6076. PubMed ID: 37609877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex interactions between regional dispersal of native taxa and an invasive species.
    Strecker AL; Arnott SE
    Ecology; 2010 Apr; 91(4):1035-47. PubMed ID: 20462118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity-stability relationship varies with latitude in zooplankton.
    Shurin JB; Arnott SE; Hillebrand H; Longmuir A; Pinel-Alloul B; Winder M; Yan ND
    Ecol Lett; 2007 Feb; 10(2):127-34. PubMed ID: 17257100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Macrophytes Support Zooplankton in a Shallow Tropical Lake: A Basis for Wetland Conservation.
    Gebrehiwot M; Kifle D; Triest L
    Environ Manage; 2017 Dec; 60(6):1127-1138. PubMed ID: 28887591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental factors controlling seasonal and spatial variability of zooplankton in thermokarst lakes along a permafrost gradient of Western Siberia.
    Noskov YA; Manasypov RM; Ermolaeva NI; Antonets DV; Shirokova LS; Pokrovsky OS
    Sci Total Environ; 2024 Apr; 922():171284. PubMed ID: 38432389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The jellification of north temperate lakes.
    Jeziorski A; Tanentzap AJ; Yan ND; Paterson AM; Palmer ME; Korosi JB; Rusak JA; Arts MT; Keller WB; Ingram R; Cairns A; Smol JP
    Proc Biol Sci; 2015 Jan; 282(1798):20142449. PubMed ID: 25411451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of crustacean zooplankton communities from acidification in Killarney Park, Ontario, 1971-2000: pH 6 as a recovery goal.
    Holt C; Yan ND
    Ambio; 2003 Apr; 32(3):203-7. PubMed ID: 12839196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication.
    Fu H; Özkan K; Yuan G; Johansson LS; Søndergaard M; Lauridsen TL; Jeppesen E
    Sci Total Environ; 2021 Jul; 778():146368. PubMed ID: 34030386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term variation of zooplankton communities in a large, heterogenous lake: Implications for future environmental change scenarios.
    Zhou J; Qin B; Zhu G; Zhang Y; Gao G
    Environ Res; 2020 Aug; 187():109704. PubMed ID: 32473462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trophic state (TSI
    Sługocki Ł; Czerniawski R
    PeerJ; 2018; 6():e5731. PubMed ID: 30310753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria.
    Jia J; Shi W; Chen Q; Lauridsen TL
    Harmful Algae; 2017 Apr; 64():63-73. PubMed ID: 28427573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.