BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24966330)

  • 1. Small ubiquitin-like modifier (SUMO) isoforms and conjugation-independent function in DNA double-strand break repair pathways.
    Hu Y; Parvin JD
    J Biol Chem; 2014 Aug; 289(31):21289-95. PubMed ID: 24966330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex.
    González-Prieto R; Eifler-Olivi K; Claessens LA; Willemstein E; Xiao Z; Talavera Ormeno CMP; Ovaa H; Ulrich HD; Vertegaal ACO
    Cell Rep; 2021 Jan; 34(4):108691. PubMed ID: 33503430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the SUMO-related enzymes, PIAS1, PIAS4, and RNF4, in DNA double-strand break repair by homologous recombination.
    Han MM; Hirakawa M; Yamauchi M; Matsuda N
    Biochem Biophys Res Commun; 2022 Feb; 591():95-101. PubMed ID: 35007836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival.
    Yang W; Wang L; Roehn G; Pearlstein RD; Ali-Osman F; Pan H; Goldbrunner R; Krantz M; Harms C; Paschen W
    Cancer Sci; 2013 Jan; 104(1):70-7. PubMed ID: 23078246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of SUMO:SIM-mediated protein-protein interaction in non-homologous end joining.
    Li YJ; Stark JM; Chen DJ; Ann DK; Chen Y
    Oncogene; 2010 Jun; 29(24):3509-18. PubMed ID: 20400978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining.
    Cabello-Lobato MJ; Jenner M; Cisneros-Aguirre M; Brüninghoff K; Sandy Z; da Costa IC; Jowitt TA; Loch CM; Jackson SP; Wu Q; Mootz HD; Stark JM; Cliff MJ; Schmidt CK
    Nucleic Acids Res; 2022 May; 50(8):4732-4754. PubMed ID: 35420136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of Ubiquitination and SUMOylation in DNA Damage Response.
    Su S; Zhang Y; Liu P
    Curr Issues Mol Biol; 2020; 35():59-84. PubMed ID: 31422933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress.
    Morris JR; Boutell C; Keppler M; Densham R; Weekes D; Alamshah A; Butler L; Galanty Y; Pangon L; Kiuchi T; Ng T; Solomon E
    Nature; 2009 Dec; 462(7275):886-90. PubMed ID: 20016594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUMO, a small, but powerful, regulator of double-strand break repair.
    Garvin AJ; Morris JR
    Philos Trans R Soc Lond B Biol Sci; 2017 Oct; 372(1731):. PubMed ID: 28847818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling DNA-End Resection: An Emerging Task for Ubiquitin and SUMO.
    Himmels SF; Sartori AA
    Front Genet; 2016; 7():152. PubMed ID: 27602047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A
    J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PIAS3 promotes homology-directed repair and distal non-homologous end joining.
    Liu S; Fan Z; Geng Z; Zhang H; Ye Q; Jiao S; Xu X
    Oncol Lett; 2013 Oct; 6(4):1045-1048. PubMed ID: 24137461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining.
    Helfricht A; Wiegant WW; Thijssen PE; Vertegaal AC; Luijsterburg MS; van Attikum H
    Cell Cycle; 2013 Sep; 12(18):3070-82. PubMed ID: 23974106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage.
    Shima H; Suzuki H; Sun J; Kono K; Shi L; Kinomura A; Horikoshi Y; Ikura T; Ikura M; Kanaar R; Igarashi K; Saitoh H; Kurumizaka H; Tashiro S
    J Cell Sci; 2013 Nov; 126(Pt 22):5284-92. PubMed ID: 24046452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms.
    Garvin AJ; Walker AK; Densham RM; Chauhan AS; Stone HR; Mackay HL; Jamshad M; Starowicz K; Daza-Martin M; Ronson GE; Lanz AJ; Beesley JF; Morris JR
    Genes Dev; 2019 Mar; 33(5-6):333-347. PubMed ID: 30796017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes.
    Hung PJ; Chen BR; George R; Liberman C; Morales AJ; Colon-Ortiz P; Tyler JK; Sleckman BP; Bredemeyer AL
    Cell Cycle; 2017 Feb; 16(3):286-295. PubMed ID: 27830975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
    Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN
    J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.