BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 24966372)

  • 61. NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses.
    Akashi K; Kakizaki T; Kamiya H; Fukaya M; Yamasaki M; Abe M; Natsume R; Watanabe M; Sakimura K
    J Neurosci; 2009 Sep; 29(35):10869-82. PubMed ID: 19726645
    [TBL] [Abstract][Full Text] [Related]  

  • 62. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons.
    Chen LJ; Wang YJ; Chen JR; Tseng GF
    Exp Neurol; 2015 Apr; 266():86-98. PubMed ID: 25708984
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Persistent activation of histamine H
    Masuoka T; Ikeda R; Konishi S
    Neuropharmacology; 2019 Jun; 151():64-73. PubMed ID: 30943384
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons.
    Chen Y; Wang Y; Ertürk A; Kallop D; Jiang Z; Weimer RM; Kaminker J; Sheng M
    Neuron; 2014 Jul; 83(2):431-443. PubMed ID: 24976215
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Endocannabinoid Signaling Mediates Local Dendritic Coordination between Excitatory and Inhibitory Synapses.
    Hu HY; Kruijssen DLH; Frias CP; Rózsa B; Hoogenraad CC; Wierenga CJ
    Cell Rep; 2019 Apr; 27(3):666-675.e5. PubMed ID: 30995465
    [TBL] [Abstract][Full Text] [Related]  

  • 66. NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice.
    Müller MK; Jacobi E; Sakimura K; Malinow R; von Engelhardt J
    Acta Neuropathol Commun; 2018 Oct; 6(1):110. PubMed ID: 30352630
    [TBL] [Abstract][Full Text] [Related]  

  • 67. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels.
    Giessel AJ; Sabatini BL
    Neuron; 2010 Dec; 68(5):936-47. PubMed ID: 21145006
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adenosine Receptor-Mediated Developmental Loss of Spike Timing-Dependent Depression in the Hippocampus.
    Pérez-Rodríguez M; Arroyo-García LE; Prius-Mengual J; Andrade-Talavera Y; Armengol JA; Pérez-Villegas EM; Duque-Feria P; Flores G; Rodríguez-Moreno A
    Cereb Cortex; 2019 Jul; 29(8):3266-3281. PubMed ID: 30169759
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Distal dendritic inputs control neuronal activity by heterosynaptic potentiation of proximal inputs.
    Han EB; Heinemann SF
    J Neurosci; 2013 Jan; 33(4):1314-25. PubMed ID: 23345207
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain.
    Ventruti A; Kazdoba TM; Niu S; D'Arcangelo G
    Neuroscience; 2011 Aug; 189():32-42. PubMed ID: 21664258
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced recruitment of endosomal Na+/H+ exchanger NHE6 into Dendritic spines of hippocampal pyramidal neurons during NMDA receptor-dependent long-term potentiation.
    Deane EC; Ilie AE; Sizdahkhani S; Das Gupta M; Orlowski J; McKinney RA
    J Neurosci; 2013 Jan; 33(2):595-610. PubMed ID: 23303939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Distribution and development of NMDA receptor activities at hippocampal synapses examined using mice lacking the epsilon1 subunit gene.
    Ito I; Akashi K; Sakimura K; Mishina M; Sugiyama H
    Neurosci Res; 1998 Feb; 30(2):119-23. PubMed ID: 9579645
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons.
    Piskorowski RA; Chevaleyre V
    Cell Mol Life Sci; 2012 Jan; 69(1):75-88. PubMed ID: 21796451
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus.
    von Engelhardt J; Mack V; Sprengel R; Kavenstock N; Li KW; Stern-Bach Y; Smit AB; Seeburg PH; Monyer H
    Science; 2010 Mar; 327(5972):1518-22. PubMed ID: 20185686
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel Ca
    Babiec WE; O'Dell TJ
    J Neurophysiol; 2018 Feb; 119(2):597-607. PubMed ID: 29142096
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adenosine receptor blockade reveals N-methyl-D-aspartate receptor- and voltage-sensitive dendritic spikes in rat hippocampal CA1 pyramidal cells in vitro.
    Li H; Henry JL
    Neuroscience; 2000; 100(1):21-31. PubMed ID: 10996455
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fast Synaptically Activated Calcium and Sodium Kinetics in Hippocampal Pyramidal Neuron Dendritic Spines.
    Miyazaki K; Ross WN
    eNeuro; 2022; 9(6):. PubMed ID: 36379712
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity.
    Dudman JT; Tsay D; Siegelbaum SA
    Neuron; 2007 Dec; 56(5):866-79. PubMed ID: 18054862
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission.
    Yamasaki M; Matsui M; Watanabe M
    J Neurosci; 2010 Mar; 30(12):4408-18. PubMed ID: 20335477
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons.
    Bengtson CP; Freitag HE; Weislogel JM; Bading H
    Biophys J; 2010 Dec; 99(12):4066-77. PubMed ID: 21156150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.