BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 2496641)

  • 1. Hormone effects on cellular Ca2+ fluxes.
    Williamson JR; Monck JR
    Annu Rev Physiol; 1989; 51():107-24. PubMed ID: 2496641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms involved in receptor-mediated changes of intracellular Ca2+ in liver.
    Williamson JR; Hansen CA; Verhoeven A; Coll KE; Johanson R; Williamson MT; Filburn C
    Soc Gen Physiol Ser; 1987; 42():93-116. PubMed ID: 2850613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin.
    Ryu SH; Lee SY; Lee KY; Rhee SG
    FASEB J; 1987 Nov; 1(5):388-93. PubMed ID: 2824270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Ca2+ influx in myeloid cells. Role of plasma membrane potential, inositol phosphates, cytosolic free [Ca2+], and filling state of intracellular Ca2+ stores.
    Demaurex N; Schlegel W; Varnai P; Mayr G; Lew DP; Krause KH
    J Clin Invest; 1992 Sep; 90(3):830-9. PubMed ID: 1522237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transduction mechanisms involved in hormonal Ca2+ fluxes.
    Williamson JR; Monck JR
    Environ Health Perspect; 1990 Mar; 84():121-36. PubMed ID: 2190806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol tetrakisphosphate-induced sequestration of Ca2+ replenishes an intracellular pool sensitive to inositol trisphosphate.
    Hill TD; Boynton AL
    J Cell Physiol; 1990 Jan; 142(1):163-9. PubMed ID: 2298819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-mediated inositol phosphate formation in relation to calcium mobilization: a comparison of two cell lines.
    Ambler SK; Thompson B; Solski PA; Brown JH; Taylor P
    Mol Pharmacol; 1987 Sep; 32(3):376-83. PubMed ID: 2823090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of inositol lipid breakdown in the generation of intracellular signals. State of the art lecture.
    Williamson JR
    Hypertension; 1986 Jun; 8(6 Pt 2):II140-56. PubMed ID: 3013767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiomers of myo-inositol-1,3,4-trisphosphate and myo-inositol-1,4,6 -trisphosphate: stereospecific recognition by cerebellar and platelet myo-inositol-1,4,5-trisphosphate receptors.
    Murphy CT; Bullock AJ; Lindley CJ; Mills SJ; Riley AM; Potter BV; Westwick J
    Mol Pharmacol; 1996 Nov; 50(5):1223-30. PubMed ID: 8913354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms involved in calcium-mobilizing agonist responses.
    Exton JH
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1986; 20():211-62. PubMed ID: 3028085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inositol polyphosphates and intracellular calcium release.
    Joseph SK; Williamson JR
    Arch Biochem Biophys; 1989 Aug; 273(1):1-15. PubMed ID: 2667466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1996 Oct; 50(4):870-7. PubMed ID: 8863832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of inositol 1,3,4,5-tetrakisphosphate in internal Ca2+ mobilization following histamine H1 receptor stimulation in DDT1 MF-2 cells.
    Van der Zee L; Sipma H; Nelemans A; Den Hertog A
    Eur J Pharmacol; 1995 May; 289(3):463-9. PubMed ID: 7556415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism and functions of inositol phosphates.
    Hughes AR; Putney JW
    Biofactors; 1988 Jul; 1(2):117-21. PubMed ID: 3076438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels.
    Morris AP; Gallacher DV; Irvine RF; Petersen OH
    Nature; 1987 Dec 17-23; 330(6149):653-5. PubMed ID: 2446148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by G-protein-coupled receptors.
    Young KW; Nash MS; Challiss RA; Nahorski SR
    J Biol Chem; 2003 Jun; 278(23):20753-60. PubMed ID: 12670945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of a small subregion of the endoplasmic reticulum in the inositol trisphosphate receptor-induced activation of Ca2+ inflow in rat hepatocytes.
    Gregory RB; Wilcox RA; Berven LA; van Straten NC; van der Marel GA; van Boom JH; Barritt GJ
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):401-8. PubMed ID: 10393099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ins(1,3,4,5)P4 is effective in mobilizing Ca2+ in mouse exocrine pancreatic acinar cells if phospholipase A2 is inhibited.
    Rowles SJ; Gallacher DV
    Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):913-8. PubMed ID: 8920999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase.
    Albert JL; Boyle JP; Roberts JA; Challiss RA; Gubby SE; Boarder MR
    Br J Pharmacol; 1997 Nov; 122(5):935-41. PubMed ID: 9384512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of beta-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event.
    Khac LD; Mokhtari A; Renner M; Harbon S
    Mol Pharmacol; 1992 Mar; 41(3):509-19. PubMed ID: 1372085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.