These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 2496684)
1. The aldox-2 locus of Drosophila melanogaster also affects sulfite oxidase and molybdenum metabolism. Bentley MM; Meidinger RG; Braaten AC Biochem Genet; 1989 Feb; 27(1-2):99-118. PubMed ID: 2496684 [TBL] [Abstract][Full Text] [Related]
2. Genetic and developmental characterization of the aldox-2 locus of Drosophila melanogaster. Meidinger RG; Bentley MM Biochem Genet; 1986 Oct; 24(9-10):683-99. PubMed ID: 3096310 [TBL] [Abstract][Full Text] [Related]
3. The molybdoenzyme system of Drosophila melanogaster. I. Sulfite oxidase: identification and properties. Expression of the enzyme in maroon-like (mal), low-xanthine dehydrogenase (lxd), and cinnamon (cin) flies. Bogaart AM; Bernini LF Biochem Genet; 1981 Oct; 19(9-10):929-46. PubMed ID: 6800353 [TBL] [Abstract][Full Text] [Related]
4. A new mutant affecting aldehyde oxidase in Drosophila melanogaster. Bentley MM; Williamson JH Z Naturforsch C Biosci; 1979; 34(3-4):304-5. PubMed ID: 156472 [TBL] [Abstract][Full Text] [Related]
5. The effects of molybate, tungstate and lxd on aldehyde oxidase and xanthine dehydrogenase in Drosophila melanogaster. Bentley MM; Williamson JH; Oliver MJ Can J Genet Cytol; 1981; 23(4):597-609. PubMed ID: 6804069 [TBL] [Abstract][Full Text] [Related]
6. Molybdenum hydroxylases in Drosophila. III. Further characterization of the low xanthine dehydrogenase gene. Schott DR; Baldwin MC; Finnerty V Biochem Genet; 1986 Aug; 24(7-8):509-27. PubMed ID: 3092803 [TBL] [Abstract][Full Text] [Related]
7. The influence of the Odh-Aldox region of the third chromosome on the response of Drosophila melanogaster to environmental alcohol. Pecsenye K; Lefkovitch LP; Giles BE; Saura A Hereditas; 1994; 121(3):237-48. PubMed ID: 7737886 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Aldoxn alleles isolated from natural populations of Drosophila melanogaster. Bentley MM Biochem Genet; 1986 Apr; 24(3-4):291-308. PubMed ID: 3089216 [TBL] [Abstract][Full Text] [Related]
9. Sulfite sensitivity and sulfite oxidase activity in Drosophila melanogaster. Braaten AC; Bentley MM Biochem Genet; 1993 Oct; 31(9-10):375-91. PubMed ID: 8122996 [TBL] [Abstract][Full Text] [Related]
10. Alcohol metabolism in Drosophila melanogaster: uselessness of the most active aldehyde oxidase produced by the aldox locus. David J; Bocquet C; Van Herrewege J; Fouillet P; Arens MF Biochem Genet; 1978 Apr; 16(3-4):203-11. PubMed ID: 98166 [TBL] [Abstract][Full Text] [Related]
11. The control of aldehyde oxidase and xanthine dehydrogenase activities and CRM levels by the mal locus in Drosophila melanogaster. Bentley MM; Williamson JH Can J Genet Cytol; 1982; 24(1):11-7. PubMed ID: 6807518 [TBL] [Abstract][Full Text] [Related]
12. Genetic control of aldehyde oxidase activity and cross-reacting-material in Drosophila melanogaster. Meidinger EM; Williamson JH Can J Genet Cytol; 1978 Dec; 20(4):489-97. PubMed ID: 94842 [TBL] [Abstract][Full Text] [Related]
13. Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Johnson JL; Waud WR; Rajagopalan KV; Duran M; Beemer FA; Wadman SK Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3715-9. PubMed ID: 6997882 [TBL] [Abstract][Full Text] [Related]
14. Nutritional control of xanthine dehydrogenase. II. Effects on xanthine dehydrogenase and aldehyde oxidase of culturing wild-type and mutant Drosophila on different levels of molybdenum. Duke EJ; Rushing DR; Glassman E Biochem Genet; 1975 Feb; 13(1-2):53-64. PubMed ID: 806286 [TBL] [Abstract][Full Text] [Related]
15. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers. Hughes RK Biochemistry; 1992 Mar; 31(12):3073-83. PubMed ID: 1313286 [TBL] [Abstract][Full Text] [Related]
16. Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. Warner CK; Finnerty V Mol Gen Genet; 1981; 184(1):92-6. PubMed ID: 6950197 [TBL] [Abstract][Full Text] [Related]
17. Cytogenetic analysis of chromosome region 89A of Drosophila melanogaster: isolation of deficiencies and mapping of Po, Aldox-1 and transposon insertions. Nelson CR; Szauter P Mol Gen Genet; 1992 Oct; 235(1):11-21. PubMed ID: 1331746 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of inactivation of molybdoenzymes by cyanide. Coughlan MP; Johnson JL; Rajagopalan KV J Biol Chem; 1980 Apr; 255(7):2694-9. PubMed ID: 6244290 [TBL] [Abstract][Full Text] [Related]
19. The four aldehyde oxidases of Drosophila melanogaster have different gene expression patterns and enzyme substrate specificities. Marelja Z; Dambowsky M; Bolis M; Georgiou ML; Garattini E; Missirlis F; Leimkühler S J Exp Biol; 2014 Jun; 217(Pt 12):2201-11. PubMed ID: 24737760 [TBL] [Abstract][Full Text] [Related]
20. Properties of xanthine dehydrogenase variants from rosy mutant strains of Drosophila melanogaster and their relevance to the enzyme's structure and mechanism. Doyle WA; Burke JF; Chovnick A; Dutton FL; Whittle JR; Bray RC Eur J Biochem; 1996 Aug; 239(3):782-95. PubMed ID: 8774727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]