These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24967340)
1. Reliable assessment and quantification of the fluorescence-labeled antisense oligonucleotides in vivo. Munisso MC; Yamaoka T Biomed Res Int; 2014; 2014():196837. PubMed ID: 24967340 [TBL] [Abstract][Full Text] [Related]
2. Detection of acceptor sites for antisense oligonucleotides on native folded RNA by fluorescence-labeled oligonucleotide. Mahara A; Sakamoto T; Munaka T; Iwase R; Yamaoka T; Murakami A Nucleic Acids Res Suppl; 2003; (3):73-4. PubMed ID: 14510386 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo transport and delivery of phosphorothioate oligonucleotides with cationic liposomes. Miyano-Kurosaki N; Barnor JS; Takeuchi H; Owada T; Nakashima H; Yamamoto N; Matsuzaki T; Shimada F; Takaku H Antivir Chem Chemother; 2004 Mar; 15(2):93-100. PubMed ID: 15185727 [TBL] [Abstract][Full Text] [Related]
4. Biodistribution studies of nanoparticles using fluorescence imaging: a qualitative or quantitative method? Liu Y; Tseng YC; Huang L Pharm Res; 2012 Dec; 29(12):3273-7. PubMed ID: 22806405 [TBL] [Abstract][Full Text] [Related]
5. Dye labeling for optical imaging biases drug carriers' biodistribution and tumor uptake. Schraven S; Rosenhain S; Brueck R; Wiechmann TM; Pola R; Etrych T; Lederle W; Lammers T; Gremse F; Kiessling F Nanomedicine; 2023 Feb; 48():102650. PubMed ID: 36623712 [TBL] [Abstract][Full Text] [Related]
6. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. Chepurna OM; Yakovliev A; Ziniuk R; Nikolaeva OA; Levchenko SM; Xu H; Losytskyy MY; Bricks JL; Slominskii YL; Vretik LO; Qu J; Ohulchanskyy TY J Nanobiotechnology; 2020 Jan; 18(1):19. PubMed ID: 31973717 [TBL] [Abstract][Full Text] [Related]
7. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo. Tansi FL; Rüger R; Rabenhold M; Steiniger F; Fahr A; Kaiser WA; Hilger I Small; 2013 Nov; 9(21):3659-69. PubMed ID: 23650267 [TBL] [Abstract][Full Text] [Related]
8. Near-Infrared In Vivo Whole-Body Fluorescence Imaging of PNA. Lim EWK; Brolin C; Nielsen PE Methods Mol Biol; 2020; 2105():251-260. PubMed ID: 32088876 [TBL] [Abstract][Full Text] [Related]
9. Biological effects and cellular uptake of c-myc antisense oligonucleotides and their cationic liposome complexes. Kanamaru T; Takagi T; Takakura Y; Hashida M J Drug Target; 1998; 5(4):235-46. PubMed ID: 9713974 [TBL] [Abstract][Full Text] [Related]
10. Tracers for Fluorescence-Guided Surgery: How Elongation of the Polymethine Chain in Cyanine Dyes Alters the Pharmacokinetics of a Dual-Modality c[RGDyK] Tracer. Buckle T; van Willigen DM; Spa SJ; Hensbergen AW; van der Wal S; de Korne CM; Welling MM; van der Poel HG; Hardwick JCH; van Leeuwen FWB J Nucl Med; 2018 Jun; 59(6):986-992. PubMed ID: 29449447 [TBL] [Abstract][Full Text] [Related]
11. Effect of charge localization on the in vivo optical imaging properties of near-infrared cyanine dye/monoclonal antibody conjugates. Sato K; Gorka AP; Nagaya T; Michie MS; Nakamura Y; Nani RR; Coble VL; Vasalatiy OV; Swenson RE; Choyke PL; Schnermann MJ; Kobayashi H Mol Biosyst; 2016 Oct; 12(10):3046-56. PubMed ID: 27452807 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent probe and permeability to cells of isopoly (S-carboxymethyl-L-cysteine) derivative of nucleic acid bases. Kitaoka S; Tohnai N; Inaki Y; Hatae T; Tanabe T Nucleic Acids Symp Ser; 1999; (42):91-2. PubMed ID: 10780394 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of antisense effect studied by functionalized oligonucleotides. Murakami A; Yoshimoto A; Furumoto A; Namba M; Yamaoka T Nucleic Acids Symp Ser; 1995; (34):229-30. PubMed ID: 8841635 [TBL] [Abstract][Full Text] [Related]
14. DOT corrected fluorescence molecular tomography using targeted contrast agents for small animal tumor imaging. Tan Y; Cao Z; Sajja HK; Lipowska M; Wang YA; Yang L; Jiang H J Xray Sci Technol; 2013; 21(1):43-52. PubMed ID: 23507851 [TBL] [Abstract][Full Text] [Related]
15. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting. Pérez-Medina C; Abdel-Atti D; Zhang Y; Longo VA; Irwin CP; Binderup T; Ruiz-Cabello J; Fayad ZA; Lewis JS; Mulder WJ; Reiner T J Nucl Med; 2014 Oct; 55(10):1706-11. PubMed ID: 25060196 [TBL] [Abstract][Full Text] [Related]
16. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Yuan L; Lin W; Zheng K; He L; Huang W Chem Soc Rev; 2013 Jan; 42(2):622-61. PubMed ID: 23093107 [TBL] [Abstract][Full Text] [Related]
17. Antisense oligonucleotide delivery with polyhexylcyanoacrylate nanoparticles as carriers. Zimmer A Methods; 1999 Jul; 18(3):286-95, 322. PubMed ID: 10454987 [TBL] [Abstract][Full Text] [Related]
18. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes. Zhao N; Zhang C; Zhao Y; Bai B; An J; Zhang H; Wu JB; Shi C Oncotarget; 2016 Aug; 7(35):57277-57289. PubMed ID: 27329598 [TBL] [Abstract][Full Text] [Related]