These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24967340)
21. Carbohydrate based biomarkers enable hybrid near infrared fluorescence and Wang W; Hansen AE; Sun H; Fliedner FP; Kjaer A; Jensen AI; Andresen TL; Henriksen JR Nanotheranostics; 2021; 5(4):448-460. PubMed ID: 34055574 [TBL] [Abstract][Full Text] [Related]
22. Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging. Vasquez KO; Casavant C; Peterson JD PLoS One; 2011; 6(6):e20594. PubMed ID: 21731618 [TBL] [Abstract][Full Text] [Related]
23. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. Meng F; Wang J; Ping Q; Yeo Y ACS Nano; 2018 Jul; 12(7):6458-6468. PubMed ID: 29920064 [TBL] [Abstract][Full Text] [Related]
24. A Dipolar Anthracene Dye: Synthesis, Optical Properties and Two-photon Tissue Imaging. Moon H; Jun YW; Kim D; Ryu HG; Wang T; Kim KH; Huh Y; Jung J; Ahn KH Chem Asian J; 2016 Sep; 11(18):2518-23. PubMed ID: 27535006 [TBL] [Abstract][Full Text] [Related]
25. Novel Gastrin-Releasing Peptide Receptor Targeted Near-Infrared Fluorescence Dye for Image-Guided Surgery of Prostate Cancer. Pagoto A; Garello F; Marini GM; Tripepi M; Arena F; Bardini P; Stefania R; Lanzardo S; Valbusa G; Porpiglia F; Manfredi M; Aime S; Terreno E Mol Imaging Biol; 2020 Feb; 22(1):85-93. PubMed ID: 31025163 [TBL] [Abstract][Full Text] [Related]
26. Computed tomography-guided time-domain diffuse fluorescence tomography in small animals for localization of cancer biomarkers. Tichauer KM; Holt RW; Samkoe KS; El-Ghussein F; Gunn JR; Jermyn M; Dehghani H; Leblond F; Pogue BW J Vis Exp; 2012 Jul; (65):e4050. PubMed ID: 22847515 [TBL] [Abstract][Full Text] [Related]
27. Interaction of oligonucleotides with positively charged liposomes using fluorescence techniques. Jurkiewicz P; Kral T; Okruszek A; Hof M; Langner M Cell Mol Biol Lett; 2002; 7(2):287. PubMed ID: 12097958 [No Abstract] [Full Text] [Related]
28. In vivo delivery of phosphorothioate oligonucleotides into murine retina. Hangai M; Tanihara H; Honda Y; Kaneda Y Arch Ophthalmol; 1998 Mar; 116(3):342-8. PubMed ID: 9514488 [TBL] [Abstract][Full Text] [Related]
29. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Juliano RL; Alahari S; Yoo H; Kole R; Cho M Pharm Res; 1999 Apr; 16(4):494-502. PubMed ID: 10227702 [TBL] [Abstract][Full Text] [Related]
30. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging. Zian W; Yang L; Peng W; Yifei J; Min J Nanomedicine (Lond); 2020 Jan; 15(2):115-129. PubMed ID: 31903846 [No Abstract] [Full Text] [Related]
31. [Methods for attaching unprotected oligonucleotides to DNA-binding, fluorescent or chemically active ligans for synthesis of antisense or gene-targeting agents and probes]. Butorin AS; Grimm GN; Hélène S Mol Biol (Mosk); 2000; 34(6):946-55. PubMed ID: 11153472 [No Abstract] [Full Text] [Related]
32. Lipophilic Near-Infrared Dyes for In Vivo Fluorescent Cell Tracking. Basel MT Methods Mol Biol; 2020; 2126():33-43. PubMed ID: 32112377 [TBL] [Abstract][Full Text] [Related]
33. A methodology for quantitation and characterization of oligonucleotides in albumin microspheres. Uddin MN; Do DP; Pai SB; Gayakwad S; Oettinger CW; D'Souza MJ Analyst; 2009 Jul; 134(7):1483-9. PubMed ID: 19562219 [TBL] [Abstract][Full Text] [Related]
34. Detection of acceptor sites for antisense oligonucleotides on native folded RNA by fluorescence spectroscopy. Mahara A; Iwase R; Sakamoto T; Yamaoka T; Yamana K; Murakami A Bioorg Med Chem; 2003 Jul; 11(13):2783-90. PubMed ID: 12788352 [TBL] [Abstract][Full Text] [Related]
35. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Carr JA; Franke D; Caram JR; Perkinson CF; Saif M; Askoxylakis V; Datta M; Fukumura D; Jain RK; Bawendi MG; Bruns OT Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4465-4470. PubMed ID: 29626132 [TBL] [Abstract][Full Text] [Related]
36. A new tool to ensure the fluorescent dye labeling stability of nanocarriers: a real challenge for fluorescence imaging. Bastiat G; Pritz CO; Roider C; Fouchet F; Lignières E; Jesacher A; Glueckert R; Ritsch-Marte M; Schrott-Fischer A; Saulnier P; Benoit JP J Control Release; 2013 Sep; 170(3):334-42. PubMed ID: 23792117 [TBL] [Abstract][Full Text] [Related]
37. Cubosomes for in vivo fluorescence lifetime imaging. Biffi S; Andolfi L; Caltagirone C; Garrovo C; Falchi AM; Lippolis V; Lorenzon A; Macor P; Meli V; Monduzzi M; Obiols-Rabasa M; Petrizza L; Prodi L; Rosa A; Schmidt J; Talmon Y; Murgia S Nanotechnology; 2017 Feb; 28(5):055102. PubMed ID: 28032617 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous measurement of one- and two-photon excited fluorescence from a single sample: a detection method for oligonucleotides. Alexander T; Tran CD Appl Opt; 2002 Apr; 41(12):2285-91. PubMed ID: 12003221 [TBL] [Abstract][Full Text] [Related]
39. Near-infrared dye-labeled antibody COC183B2 enables detection of tiny metastatic ovarian cancer and optimizes fluorescence-guided surgery. Chen J; Guo Y; Li H; Zhang C; Chang X; Ma R; Cheng H; Ye X; Cui H; Li Y J Surg Oncol; 2020 Nov; 122(6):1207-1217. PubMed ID: 32705686 [TBL] [Abstract][Full Text] [Related]
40. Uptake of liposomally entrapped fluorescent antisense oligonucleotides in NG108-15 cells: conventional versus pH-sensitive. Skalko-Basnet N; Tohda M; Watanabe H Biol Pharm Bull; 2002 Dec; 25(12):1583-7. PubMed ID: 12499644 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]