These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 24967424)
1. Chemometric study of trace elements in hard coals of the upper Silesian Coal Basin, Poland. Smoliński A; Rompalski P; Cybulski K; Chećko J; Howaniec N ScientificWorldJournal; 2014; 2014():234204. PubMed ID: 24967424 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Modelling of Trace Elements in Hard Coal. Smoliński A; Howaniec N PLoS One; 2016; 11(7):e0159265. PubMed ID: 27438794 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns. Silva LF; Oliveira ML; da Boit KM; Finkelman RB Environ Geochem Health; 2009 Aug; 31(4):475-85. PubMed ID: 18677575 [TBL] [Abstract][Full Text] [Related]
4. The feasibility of CO Gabruś E; Wojtacha-Rychter K; Aleksandrzak T; Smoliński A; Król M Sci Total Environ; 2021 Nov; 796():149064. PubMed ID: 34328898 [TBL] [Abstract][Full Text] [Related]
5. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry. Richaud R; Lazaro MJ; Lachas H; Miller BB; Herod AA; Dugwell DR; Kandiyoti R Rapid Commun Mass Spectrom; 2000; 14(5):317-28. PubMed ID: 10700033 [TBL] [Abstract][Full Text] [Related]
6. Dissolution of harmful trace elements from coal and the environmental risk to mine water utilization. Cao Q; Yang L; Qian Y; Chen S Environ Sci Pollut Res Int; 2023 Jan; 30(3):7786-7800. PubMed ID: 36044135 [TBL] [Abstract][Full Text] [Related]
7. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Mondal S; Singh G Environ Geochem Health; 2021 May; 43(5):2081-2103. PubMed ID: 33389370 [TBL] [Abstract][Full Text] [Related]
8. High concentrations of HgS, MeHg and toxic gas emissions in thermally affected waste dumps from hard coal mining in Poland. Nádudvari Á; Cabała J; Marynowski L; Jabłońska M; Dziurowicz M; Malczewski D; Kozielska B; Siupka P; Piotrowska-Seget Z; Simoneit BRT; Szczyrba M J Hazard Mater; 2022 Jun; 431():128542. PubMed ID: 35248960 [TBL] [Abstract][Full Text] [Related]
9. Trace elements concentration and distributions in coal and coal mining wastes and their environmental and health impacts in Shaanxi, China. Hussain R; Luo K; Chao Z; Xiaofeng Z Environ Sci Pollut Res Int; 2018 Jul; 25(20):19566-19584. PubMed ID: 29732512 [TBL] [Abstract][Full Text] [Related]
10. Possibilities of Practical Use of Historical Distributions of Ash, Sulfur and Mercury Contents in Commercial Steam Coal of the USCB. Pyka I; Kempa W; Wierzchowski K Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356441 [TBL] [Abstract][Full Text] [Related]
11. Fine chemical speciation and environmental impact capacity of trace elements with different enrichment levels in coal. Liu Y; Wei Y; Liu G; Fu B; Chen B; Zhang J; Gui L; Zhou H; Lu M Sci Total Environ; 2023 Jan; 856(Pt 1):158928. PubMed ID: 36155051 [TBL] [Abstract][Full Text] [Related]
12. Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China. Chuncai Z; Guijian L; Dun W; Ting F; Ruwei W; Xiang F Chemosphere; 2014 Jan; 95():193-9. PubMed ID: 24050719 [TBL] [Abstract][Full Text] [Related]
13. Bioelements and mineral matter in human livers from the highly industrialized region of the Upper Silesia Coal Basin (Poland). Lewińska-Preis L; Jabłońska M; Fabiańska MJ; Kita A Environ Geochem Health; 2011 Dec; 33(6):595-611. PubMed ID: 21308401 [TBL] [Abstract][Full Text] [Related]
14. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data. Smoliński A; Stańczyk K; Kapusta K; Howaniec N Water Air Soil Pollut; 2012 Nov; 223(9):5745-5758. PubMed ID: 23136453 [TBL] [Abstract][Full Text] [Related]
15. Emission and transformation behaviors of trace elements during combustion of Cd-rich coals from coal combustion related endemic fluorosis areas of Southwest, China. Xiong Y; Ning Z; Liu Y; Gomez M; Xiao T Ecotoxicol Environ Saf; 2022 Nov; 246():114145. PubMed ID: 36215884 [TBL] [Abstract][Full Text] [Related]
16. Quantitative assessment of variability and uncertainty of hazardous trace element (Cd, Cr, and Pb) contents in Chinese coals by using bootstrap simulation. Tian H; Cheng K; Wang Y; Zhao D; Chai F; Xue Z; Hao J J Air Waste Manag Assoc; 2011 Jul; 61(7):755-63. PubMed ID: 21850830 [TBL] [Abstract][Full Text] [Related]
17. Spatial distribution of harmful trace elements in Chinese coalfields: An application of WebGIS technology. Cao Q; Yang L; Ren W; Song Y; Huang S; Wang Y; Wang Z Sci Total Environ; 2021 Feb; 755(Pt 1):142527. PubMed ID: 33032133 [TBL] [Abstract][Full Text] [Related]
18. Evolution behavior of mineral structure and trace elements in feed coals from six coal-fired power plants in China. Wang J; Yan R; Liu Z; Wang J; Zhang P Environ Sci Pollut Res Int; 2023 Aug; 30(36):85759-85771. PubMed ID: 37391565 [TBL] [Abstract][Full Text] [Related]
19. Sources and Distribution of Trace Elements in Soils Near Coal-Related Industries. Shangguan Y; Wei Y; Wang L; Hou H Arch Environ Contam Toxicol; 2016 Apr; 70(3):439-51. PubMed ID: 26428004 [TBL] [Abstract][Full Text] [Related]
20. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications. Yin R; Feng X; Chen J Environ Sci Technol; 2014 May; 48(10):5565-74. PubMed ID: 24742360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]