These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2496745)

  • 21. Kinetic investigation of the functional role of phenylalanine-31 of recombinant human dihydrofolate reductase.
    Tsay JT; Appleman JR; Beard WA; Prendergast NJ; Delcamp TJ; Freisheim JH; Blakley RL
    Biochemistry; 1990 Jul; 29(27):6428-36. PubMed ID: 2207084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of a single amino acid substitution on Escherichia coli dihydrofolate reductase catalysis and ligand binding.
    Baccanari DP; Stone D; Kuyper L
    J Biol Chem; 1981 Feb; 256(4):1738-47. PubMed ID: 7007370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of aspartate 27 in the binding of methotrexate to dihydrofolate reductase from Escherichia coli.
    Appleman JR; Howell EE; Kraut J; Kühl M; Blakley RL
    J Biol Chem; 1988 Jul; 263(19):9187-98. PubMed ID: 3288632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interloop contacts modulate ligand cycling during catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Wahnon DC; Benkovic SJ
    Biochemistry; 2001 Jan; 40(4):867-75. PubMed ID: 11170407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of active-site isoleucine to alanine mutation on the DHFR catalyzed hydride-transfer.
    Stojković V; Perissinotti LL; Lee J; Benkovic SJ; Kohen A
    Chem Commun (Camb); 2010 Dec; 46(47):8974-6. PubMed ID: 20972508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling of protein motions and hydrogen transfer during catalysis by Escherichia coli dihydrofolate reductase.
    Swanwick RS; Maglia G; Tey LH; Allemann RK
    Biochem J; 2006 Feb; 394(Pt 1):259-65. PubMed ID: 16241906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis.
    Warren MS; Brown KA; Farnum MF; Howell EE; Kraut J
    Biochemistry; 1991 Nov; 30(46):11092-103. PubMed ID: 1932031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of an altered proton donation mechanism in Escherichia coli dihydrofolate reductase.
    Howell EE; Warren MS; Booth CL; Villafranca JE; Kraut J
    Biochemistry; 1987 Dec; 26(26):8591-8. PubMed ID: 2894842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase.
    Hicks SN; Smiley RD; Hamilton JB; Howell EE
    Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6327-35. PubMed ID: 9572847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Importance of a hydrophobic residue in binding and catalysis by dihydrofolate reductase.
    Mayer RJ; Chen JT; Taira K; Fierke CA; Benkovic SJ
    Proc Natl Acad Sci U S A; 1986 Oct; 83(20):7718-20. PubMed ID: 3463995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular basis for nonadditive mutational effects in Escherichia coli dihydrofolate reductase.
    Wagner CR; Huang Z; Singleton SF; Benkovic SJ
    Biochemistry; 1995 Dec; 34(48):15671-80. PubMed ID: 7495797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli.
    Fierke CA; Johnson KA; Benkovic SJ
    Biochemistry; 1987 Jun; 26(13):4085-92. PubMed ID: 3307916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of substrate, coenzyme, and inhibitor binding to Escherichia coli dihydrofolate reductase.
    Cayley PJ; Dunn SM; King RW
    Biochemistry; 1981 Feb; 20(4):874-9. PubMed ID: 7011378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformation coupled enzyme catalysis: single-molecule and transient kinetics investigation of dihydrofolate reductase.
    Antikainen NM; Smiley RD; Benkovic SJ; Hammes GG
    Biochemistry; 2005 Dec; 44(51):16835-43. PubMed ID: 16363797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase.
    Duff MR; Chopra S; Strader MB; Agarwal PK; Howell EE
    Biochemistry; 2016 Jan; 55(1):133-45. PubMed ID: 26637016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis.
    Nakano T; Spencer HT; Appleman JR; Blakley RL
    Biochemistry; 1994 Aug; 33(33):9945-52. PubMed ID: 8061003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.