These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24967506)

  • 1. Fuel from water: the photochemical generation of hydrogen from water.
    Han Z; Eisenberg R
    Acc Chem Res; 2014 Aug; 47(8):2537-44. PubMed ID: 24967506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous Photogeneration of H2 with CdSe Nanocrystals and Nickel Catalysts: Electron Transfer Dynamics.
    Liu C; Qiu F; Peterson JJ; Krauss TD
    J Phys Chem B; 2015 Jun; 119(24):7349-57. PubMed ID: 25523941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst.
    Han Z; Qiu F; Eisenberg R; Holland PL; Krauss TD
    Science; 2012 Dec; 338(6112):1321-4. PubMed ID: 23138979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes.
    Lv H; Ruberu TP; Fleischauer VE; Brennessel WW; Neidig ML; Eisenberg R
    J Am Chem Soc; 2016 Sep; 138(36):11654-63. PubMed ID: 27584879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.
    Zee DZ; Chantarojsiri T; Long JR; Chang CJ
    Acc Chem Res; 2015 Jul; 48(7):2027-36. PubMed ID: 26101803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange.
    Das A; Han Z; Haghighi MG; Eisenberg R
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16716-23. PubMed ID: 24082134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size dependence of photocatalytic hydrogen generation for CdTe quantum dots.
    Yin J; Cogan NMB; Burke R; Hou Z; Sowers KL; Krauss TD
    J Chem Phys; 2019 Nov; 151(17):174707. PubMed ID: 31703490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems.
    Han Z; Shen L; Brennessel WW; Holland PL; Eisenberg R
    J Am Chem Soc; 2013 Oct; 135(39):14659-69. PubMed ID: 24004329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible Light Driven Hydrogen Evolution by Molecular Nickel Catalysts with Time-Resolved Spectroscopic and DFT Insights.
    Ho XL; Shao H; Ng YY; Ganguly R; Lu Y; Soo HS
    Inorg Chem; 2019 Jan; 58(2):1469-1480. PubMed ID: 30608673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures.
    Zhu H; Song N; Lv H; Hill CL; Lian T
    J Am Chem Soc; 2012 Jul; 134(28):11701-8. PubMed ID: 22721499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution.
    Orain C; Quentel F; Gloaguen F
    ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.
    Morris AJ; Meyer GJ; Fujita E
    Acc Chem Res; 2009 Dec; 42(12):1983-94. PubMed ID: 19928829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting photocatalytic hydrogen generation of cadmium telluride colloidal quantum dots by nickel ion doping.
    Xu J; Wang J; Chen Z; Xia X; Li S; Li Z
    J Colloid Interface Sci; 2019 Aug; 549():63-71. PubMed ID: 31022524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.