These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 24967579)
21. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Thiennimitr P; Winter SE; Winter MG; Xavier MN; Tolstikov V; Huseby DL; Sterzenbach T; Tsolis RM; Roth JR; Bäumler AJ Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17480-5. PubMed ID: 21969563 [TBL] [Abstract][Full Text] [Related]
22. The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Karlinsey JE; Maguire ME; Becker LA; Crouch ML; Fang FC Mol Microbiol; 2010 Nov; 78(3):669-85. PubMed ID: 20807201 [TBL] [Abstract][Full Text] [Related]
23. An Oxidative Central Metabolism Enables Salmonella to Utilize Microbiota-Derived Succinate. Spiga L; Winter MG; Furtado de Carvalho T; Zhu W; Hughes ER; Gillis CC; Behrendt CL; Kim J; Chessa D; Andrews-Polymenis HL; Beiting DP; Santos RL; Hooper LV; Winter SE Cell Host Microbe; 2017 Sep; 22(3):291-301.e6. PubMed ID: 28844888 [TBL] [Abstract][Full Text] [Related]
24. A comprehensive study of the contribution of Salmonella enterica serovar Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection models. Buckner MM; Croxen MA; Arena ET; Finlay BB Virulence; 2011; 2(3):208-16. PubMed ID: 21540636 [TBL] [Abstract][Full Text] [Related]
25. Gut inflammation provides a respiratory electron acceptor for Salmonella. Winter SE; Thiennimitr P; Winter MG; Butler BP; Huseby DL; Crawford RW; Russell JM; Bevins CL; Adams LG; Tsolis RM; Roth JR; Bäumler AJ Nature; 2010 Sep; 467(7314):426-9. PubMed ID: 20864996 [TBL] [Abstract][Full Text] [Related]
26. Interplay between MgtC and PagC in Salmonella enterica serovar Typhimurium. Alix E; Miki T; Felix C; Rang C; Figueroa-Bossi N; Demettre E; Blanc-Potard AB Microb Pathog; 2008 Sep; 45(3):236-40. PubMed ID: 18620040 [TBL] [Abstract][Full Text] [Related]
27. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Hung CC; Garner CD; Slauch JM; Dwyer ZW; Lawhon SD; Frye JG; McClelland M; Ahmer BM; Altier C Mol Microbiol; 2013 Mar; 87(5):1045-60. PubMed ID: 23289537 [TBL] [Abstract][Full Text] [Related]
28. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Raffatellu M; George MD; Akiyama Y; Hornsby MJ; Nuccio SP; Paixao TA; Butler BP; Chu H; Santos RL; Berger T; Mak TW; Tsolis RM; Bevins CL; Solnick JV; Dandekar S; Bäumler AJ Cell Host Microbe; 2009 May; 5(5):476-86. PubMed ID: 19454351 [TBL] [Abstract][Full Text] [Related]
29. Inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine. McLaughlin PA; Bettke JA; Tam JW; Leeds J; Bliska JB; Butler BP; van der Velden AWM PLoS Pathog; 2019 Jul; 15(7):e1007847. PubMed ID: 31306468 [TBL] [Abstract][Full Text] [Related]
30. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. Price-Carter M; Tingey J; Bobik TA; Roth JR J Bacteriol; 2001 Apr; 183(8):2463-75. PubMed ID: 11274105 [TBL] [Abstract][Full Text] [Related]
32. The CorA Mg2+ channel is required for the virulence of Salmonella enterica serovar typhimurium. Papp-Wallace KM; Nartea M; Kehres DG; Porwollik S; McClelland M; Libby SJ; Fang FC; Maguire ME J Bacteriol; 2008 Oct; 190(19):6517-23. PubMed ID: 18676664 [TBL] [Abstract][Full Text] [Related]
33. The Pyromaniac Inside You: Salmonella Metabolism in the Host Gut. Rivera-Chávez F; Bäumler AJ Annu Rev Microbiol; 2015; 69():31-48. PubMed ID: 26002180 [TBL] [Abstract][Full Text] [Related]
34. Identification of metabolic pathways essential for fitness of Salmonella Typhimurium in vivo. Jelsbak L; Hartman H; Schroll C; Rosenkrantz JT; Lemire S; Wallrodt I; Thomsen LE; Poolman M; Kilstrup M; Jensen PR; Olsen JE PLoS One; 2014; 9(7):e101869. PubMed ID: 24992475 [TBL] [Abstract][Full Text] [Related]
35. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Barthel M; Hapfelmeier S; Quintanilla-Martínez L; Kremer M; Rohde M; Hogardt M; Pfeffer K; Rüssmann H; Hardt WD Infect Immun; 2003 May; 71(5):2839-58. PubMed ID: 12704158 [TBL] [Abstract][Full Text] [Related]
36. Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Campoy S; Jara M; Busquets N; Pérez De Rozas AM; Badiola I; Barbé J Infect Immun; 2002 Aug; 70(8):4721-5. PubMed ID: 12117991 [TBL] [Abstract][Full Text] [Related]
37. Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis. Grassl GA; Valdez Y; Bergstrom KS; Vallance BA; Finlay BB Gastroenterology; 2008 Mar; 134(3):768-80. PubMed ID: 18325390 [TBL] [Abstract][Full Text] [Related]
38. Intestinal Long-Chain Fatty Acids Act as a Direct Signal To Modulate Expression of the Salmonella Pathogenicity Island 1 Type III Secretion System. Golubeva YA; Ellermeier JR; Cott Chubiz JE; Slauch JM mBio; 2016 Feb; 7(1):e02170-15. PubMed ID: 26884427 [TBL] [Abstract][Full Text] [Related]
39. Infection with enteric pathogens Salmonella typhimurium and Citrobacter rodentium modulate TGF-beta/Smad signaling pathways in the intestine. Zhang YG; Singhal M; Lin Z; Manzella C; Kumar A; Alrefai WA; Dudeja PK; Saksena S; Sun J; Gill RK Gut Microbes; 2018 Jul; 9(4):326-337. PubMed ID: 29381406 [TBL] [Abstract][Full Text] [Related]
40. Measurement of Fructose-Asparagine Concentrations in Human and Animal Foods. Wu J; Sabag-Daigle A; Metz TO; Deatherage Kaiser BL; Gopalan V; Behrman EJ; Wysocki VH; Ahmer BMM J Agric Food Chem; 2018 Jan; 66(1):212-217. PubMed ID: 29232127 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]