These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24967636)

  • 1. Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation.
    Soneson C; Gerster S; Delorenzi M
    PLoS One; 2014; 9(6):e100335. PubMed ID: 24967636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bias in error estimation when using cross-validation for model selection.
    Varma S; Simon R
    BMC Bioinformatics; 2006 Feb; 7():91. PubMed ID: 16504092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Classifier Performance for Multiclass Phenotype Discrimination in Untargeted Metabolomics.
    Trainor PJ; DeFilippis AP; Rai SN
    Metabolites; 2017 Jun; 7(2):. PubMed ID: 28635678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data.
    Luo J; Schumacher M; Scherer A; Sanoudou D; Megherbi D; Davison T; Shi T; Tong W; Shi L; Hong H; Zhao C; Elloumi F; Shi W; Thomas R; Lin S; Tillinghast G; Liu G; Zhou Y; Herman D; Li Y; Deng Y; Fang H; Bushel P; Woods M; Zhang J
    Pharmacogenomics J; 2010 Aug; 10(4):278-91. PubMed ID: 20676067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Outcome prediction based on microarray analysis: a critical perspective on methods.
    Zervakis M; Blazadonakis ME; Tsiliki G; Danilatou V; Tsiknakis M; Kafetzopoulos D
    BMC Bioinformatics; 2009 Feb; 10():53. PubMed ID: 19200394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bias and Stability of Single Variable Classifiers for Feature Ranking and Selection.
    Fakhraei S; Soltanian-Zadeh H; Fotouhi F
    Expert Syst Appl; 2014 Nov; 14(15):6945-6958. PubMed ID: 25177107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble of a subset of
    Gul A; Perperoglou A; Khan Z; Mahmoud O; Miftahuddin M; Adler W; Lausen B
    Adv Data Anal Classif; 2018; 12(4):827-840. PubMed ID: 30931011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embracing noise to improve cross-batch prediction accuracy.
    Koh CH; Wong L
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S3. PubMed ID: 23282067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of breast cancer metastasis by gene expression profiles: a comparison of metagenes and single genes.
    Burton M; Thomassen M; Tan Q; Kruse TA
    Cancer Inform; 2012; 11():193-217. PubMed ID: 23304070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic feed phase identification in multivariate bioprocess profiles by sequential binary classification.
    Nikzad-Langerodi R; Lughofer E; Saminger-Platz S; Zahel T; Sagmeister P; Herwig C
    Anal Chim Acta; 2017 Aug; 982():48-61. PubMed ID: 28734365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer survival classification using integrated data sets and intermediate information.
    Kim S; Park T; Kon M
    Artif Intell Med; 2014 Sep; 62(1):23-31. PubMed ID: 24997860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of feature selection and classification for MALDI-MS data.
    Liu Q; Sung AH; Qiao M; Chen Z; Yang JY; Yang MQ; Huang X; Deng Y
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S3. PubMed ID: 19594880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis.
    Statnikov A; Aliferis CF; Tsamardinos I; Hardin D; Levy S
    Bioinformatics; 2005 Mar; 21(5):631-43. PubMed ID: 15374862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bias correction for selecting the minimal-error classifier from many machine learning models.
    Ding Y; Tang S; Liao SG; Jia J; Oesterreich S; Lin Y; Tseng GC
    Bioinformatics; 2014 Nov; 30(22):3152-8. PubMed ID: 25086004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of THz pulse signals using two-dimensional cross-correlation feature extraction and non-linear classifiers.
    Siuly ; Yin X; Hadjiloucas S; Zhang Y
    Comput Methods Programs Biomed; 2016 Apr; 127():64-82. PubMed ID: 27000290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Ɓukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.