These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 24967716)
1. Redox activities and ROS, NO and phenylpropanoids production by axenically cultured intact olive seedling roots after interaction with a mycorrhizal or a pathogenic fungus. Espinosa F; Garrido I; Ortega A; Casimiro I; Álvarez-Tinaut MC PLoS One; 2014; 9(6):e100132. PubMed ID: 24967716 [TBL] [Abstract][Full Text] [Related]
2. Reflexions on some aspects of the interactions among ROS, RNS, and Ca(2+) in response to a mycorrhizal or a pathogenic fungus. Espinosa F; Garrido I; Álvarez-Tinaut MC Plant Signal Behav; 2015; 10(9):e1049789. PubMed ID: 26366845 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: A possible mechanism for regulation of defense molecules. Mechri B; Tekaya M; Cheheb H; Attia F; Hammami M J Plant Physiol; 2015 Aug; 185():40-3. PubMed ID: 26276403 [TBL] [Abstract][Full Text] [Related]
4. Redox-related peroxidative responses evoked by methyl-jasmonate in axenically cultured aeroponic sunflower (Helianthus annuus L.) seedling roots. Garrido I; Espinosa F; Córdoba-Pedregosa MC; González-Reyes JA; Alvarez-Tinaut MC Protoplasma; 2003 May; 221(1-2):79-91. PubMed ID: 12768345 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions. Bompadre MJ; Pérgola M; Fernández Bidondo L; Colombo RP; Silvani VA; Pardo AG; Ocampo JA; Godeas AM ScientificWorldJournal; 2014; 2014():378950. PubMed ID: 24688382 [TBL] [Abstract][Full Text] [Related]
6. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Mechri B; Tekaya M; Attia F; Hammami M; Chehab H Plant Physiol Biochem; 2020 Nov; 156():178-191. PubMed ID: 32961433 [TBL] [Abstract][Full Text] [Related]
7. Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Zhang L; Xing D Plant Cell Physiol; 2008 Jul; 49(7):1092-111. PubMed ID: 18535010 [TBL] [Abstract][Full Text] [Related]
8. [Effects of arbuscular mycorrhizal fungus on the seedling growth of grafted watermelon and the defensive enzyme activities in the seedling roots]. Chen K; Sun JQ; Liu RJ; Li M Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):135-41. PubMed ID: 23718001 [TBL] [Abstract][Full Text] [Related]
9. Oxidative defence reactions in sunflower roots induced by methyl-jasmonate and methyl-salicylate and their relation with calcium signalling. Garrido I; Espinosa F; Alvarez-Tinaut MC Protoplasma; 2009 Oct; 237(1-4):27-39. PubMed ID: 19763783 [TBL] [Abstract][Full Text] [Related]
10. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
11. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Król P; Igielski R; Pollmann S; Kępczyńska E J Plant Physiol; 2015 May; 179():122-32. PubMed ID: 25867625 [TBL] [Abstract][Full Text] [Related]
12. Oxidative stress induced in sunflower seedling roots by aqueous dry olive-mill residues. Garrido I; García-Sánchez M; Casimiro I; Casero PJ; García-Romera I; Ocampo JA; Espinosa F PLoS One; 2012; 7(9):e46137. PubMed ID: 23049960 [TBL] [Abstract][Full Text] [Related]
13. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. Wu QS; Xia RX; Zou YN J Plant Physiol; 2006 Nov; 163(11):1101-10. PubMed ID: 17032615 [TBL] [Abstract][Full Text] [Related]
14. Does methyl jasmonate modify the oxidative stress response in Phaseolus coccineus treated with Cu? Hanaka A; Wójcik M; Dresler S; Mroczek-Zdyrska M; Maksymiec W Ecotoxicol Environ Saf; 2016 Feb; 124():480-488. PubMed ID: 26629660 [TBL] [Abstract][Full Text] [Related]
15. Mycorrhiza alters the profile of root hairs in trifoliate orange. Wu QS; Liu CY; Zhang DJ; Zou YN; He XH; Wu QH Mycorrhiza; 2016 Apr; 26(3):237-47. PubMed ID: 26499883 [TBL] [Abstract][Full Text] [Related]
16. Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells. Sadeghnezhad E; Sharifi M; Zare-Maivan H Planta; 2016 Jul; 244(1):75-85. PubMed ID: 26945858 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Huang X; Wang L; Ma F Chemosphere; 2017 Nov; 187():221-229. PubMed ID: 28850908 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Schüßler A; Krüger C; Urgiles N Mycorrhiza; 2016 Apr; 26(3):199-207. PubMed ID: 26260945 [TBL] [Abstract][Full Text] [Related]
19. Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp. modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids. Mechri B; Attia F; Tekaya M; Cheheb H; Hammami M J Plant Physiol; 2014 Sep; 171(14):1217-20. PubMed ID: 25014256 [TBL] [Abstract][Full Text] [Related]
20. Seedling performance of Phragmites australis (Cav.) Trin ex. Steudel in the presence of arbuscular mycorrhizal fungi. Wu J; Ma F; Wang L; Yang J; Huang X; An G; Liu S J Appl Microbiol; 2014 Jun; 116(6):1593-606. PubMed ID: 24612351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]