These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24967727)
1. Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Yuan Y; Feng G; Qin W; Tang BZ; Liu B Chem Commun (Camb); 2014 Aug; 50(63):8757-60. PubMed ID: 24967727 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy. Yuan Y; Liu B ACS Appl Mater Interfaces; 2014 Sep; 6(17):14903-10. PubMed ID: 25075548 [TBL] [Abstract][Full Text] [Related]
3. Cellular and Mitochondrial Dual-Targeted Organic Dots with Aggregation-Induced Emission Characteristics for Image-Guided Photodynamic Therapy. Feng G; Qin W; Hu Q; Tang BZ; Liu B Adv Healthc Mater; 2015 Dec; 4(17):2667-76. PubMed ID: 26479020 [TBL] [Abstract][Full Text] [Related]
4. [Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer]. Roblero-Bartolón GV; Ramón-Gallegos E Gac Med Mex; 2015; 151(1):85-98. PubMed ID: 25739488 [TBL] [Abstract][Full Text] [Related]
5. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Bechet D; Couleaud P; Frochot C; Viriot ML; Guillemin F; Barberi-Heyob M Trends Biotechnol; 2008 Nov; 26(11):612-21. PubMed ID: 18804298 [TBL] [Abstract][Full Text] [Related]
6. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Gary-Bobo M; Mir Y; Rouxel C; Brevet D; Basile I; Maynadier M; Vaillant O; Mongin O; Blanchard-Desce M; Morère A; Garcia M; Durand JO; Raehm L Angew Chem Int Ed Engl; 2011 Nov; 50(48):11425-9. PubMed ID: 21976357 [No Abstract] [Full Text] [Related]
7. pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy. Liu L; Fu L; Jing T; Ruan Z; Yan L ACS Appl Mater Interfaces; 2016 Apr; 8(14):8980-90. PubMed ID: 27020730 [TBL] [Abstract][Full Text] [Related]
8. Dendrimer polymeric micelles for enhanced photodynamic cancer treatment. Park K J Control Release; 2009 Feb; 133(3):171. PubMed ID: 19103238 [No Abstract] [Full Text] [Related]
9. Selective photodynamic therapy based on aggregation-induced emission enhancement of fluorescent organic nanoparticles. Chang CC; Hsieh MC; Lin JC; Chang TC Biomaterials; 2012 Jan; 33(3):897-906. PubMed ID: 22024361 [TBL] [Abstract][Full Text] [Related]
10. Mitochondria and plasma membrane dual-targeted chimeric peptide for single-agent synergistic photodynamic therapy. Cheng H; Zheng RR; Fan GL; Fan JH; Zhao LP; Jiang XY; Yang B; Yu XY; Li SY; Zhang XZ Biomaterials; 2019 Jan; 188():1-11. PubMed ID: 30312907 [TBL] [Abstract][Full Text] [Related]
11. An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy. Mesquita MQ; Dias CJ; Gamelas S; Fardilha M; Neves MGPMS; Faustino MAF An Acad Bras Cienc; 2018; 90(1 Suppl 2):1101-1130. PubMed ID: 29873674 [TBL] [Abstract][Full Text] [Related]
12. Tumor cell specific and lysosome-targeted delivery of nitric oxide for enhanced photodynamic therapy triggered by 808 nm near-infrared light. Xiang HJ; Deng Q; An L; Guo M; Yang SP; Liu JG Chem Commun (Camb); 2016 Jan; 52(1):148-51. PubMed ID: 26503188 [TBL] [Abstract][Full Text] [Related]
13. Upconverting nanoparticles with a mesoporous TiO₂ shell for near-infrared-triggered drug delivery and synergistic targeted cancer therapy. Yin M; Ju E; Chen Z; Li Z; Ren J; Qu X Chemistry; 2014 Oct; 20(43):14012-7. PubMed ID: 25200923 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of phototoxicity against human pancreatic cancer cells with photosensitizer-encapsulated amphiphilic sodium alginate derivative nanoparticles. Yu Z; Li H; Zhang LM; Zhu Z; Yang L Int J Pharm; 2014 Oct; 473(1-2):501-9. PubMed ID: 25089506 [TBL] [Abstract][Full Text] [Related]
16. Inorganic nanoparticles for enhanced photodynamic cancer therapy. Cheng SH; Lo LW Curr Drug Discov Technol; 2011 Sep; 8(3):250-68. PubMed ID: 21644924 [TBL] [Abstract][Full Text] [Related]
17. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers. Chang Y; Li X; Zhang L; Xia L; Liu X; Li C; Zhang Y; Tu L; Xue B; Zhao H; Zhang H; Kong X Sci Rep; 2017 Mar; 7():45633. PubMed ID: 28361967 [TBL] [Abstract][Full Text] [Related]
18. Nanocomposites for X-Ray Photodynamic Therapy. Gadzhimagomedova Z; Zolotukhin P; Kit O; Kirsanova D; Soldatov A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32503329 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, surface modification, characterization, and biomedical in vitro applications of organically modified silica (ORMOSIL) nanoparticles. Diksha ; Roy I Methods Mol Biol; 2012; 906():365-79. PubMed ID: 22791449 [TBL] [Abstract][Full Text] [Related]
20. Photosensitizer-incorporated G-quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Yin M; Li Z; Liu Z; Ren J; Yang X; Qu X Chem Commun (Camb); 2012 Jul; 48(52):6556-8. PubMed ID: 22622597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]