BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 24968107)

  • 21. Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation.
    Salvi DA; Aita GM; Robert D; Bazan V
    Appl Biochem Biotechnol; 2010 May; 161(1-8):67-74. PubMed ID: 20186502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse.
    Sipos B; Réczey J; Somorai Z; Kádár Z; Dienes D; Réczey K
    Appl Biochem Biotechnol; 2009 May; 153(1-3):151-62. PubMed ID: 19015818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents.
    Alriksson B; Cavka A; Jönsson LJ
    Bioresour Technol; 2011 Jan; 102(2):1254-63. PubMed ID: 20822900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment.
    Li BZ; Balan V; Yuan YJ; Dale BE
    Bioresour Technol; 2010 Feb; 101(4):1285-92. PubMed ID: 19811909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment.
    Chen C; Boldor D; Aita G; Walker M
    Bioresour Technol; 2012 Apr; 110():190-7. PubMed ID: 22322148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane.
    Aita GA; Salvi DA; Walker MS
    Bioresour Technol; 2011 Mar; 102(6):4444-8. PubMed ID: 21247758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy
    Alam A; Zhang R; Liu P; Huang J; Wang Y; Hu Z; Madadi M; Sun D; Hu R; Ragauskas AJ; Tu Y; Peng L
    Biotechnol Biofuels; 2019; 12():99. PubMed ID: 31057665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem.
    Li M; Wang J; Yang Y; Xie G
    Bioresour Technol; 2016 May; 208():31-41. PubMed ID: 26918836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process.
    Geddes CC; Mullinnix MT; Nieves IU; Hoffman RW; Sagues WJ; York SW; Shanmugam KT; Erickson JE; Vermerris WE; Ingram LO
    Bioresour Technol; 2013 Jan; 128():716-24. PubMed ID: 23375156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production.
    Yu J; Zhang X; Tan T
    J Biotechnol; 2007 May; 129(3):415-20. PubMed ID: 17383041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems.
    Sun SL; Sun SN; Wen JL; Zhang XM; Peng F; Sun RC
    Bioresour Technol; 2015 Jan; 175():473-9. PubMed ID: 25459857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of combination of pretreatment of
    Nedumaran M; Singh S; Jamaldheen SB; Nath P; Moholkar VS; Goyal A
    Prep Biochem Biotechnol; 2020; 50(9):883-896. PubMed ID: 32425106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.
    Dogaris I; Gkounta O; Mamma D; Kekos D
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):541-50. PubMed ID: 22573272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquefaction of lignocellulose at high-solids concentrations.
    Jørgensen H; Vibe-Pedersen J; Larsen J; Felby C
    Biotechnol Bioeng; 2007 Apr; 96(5):862-70. PubMed ID: 16865734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fractionating pretreatment of sugarcane bagasse by aqueous formic acid with direct recycle of spent liquor to increase cellulose digestibility--the Formiline process.
    Zhao X; Liu D
    Bioresour Technol; 2012 Aug; 117():25-32. PubMed ID: 22609710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing.
    Matano Y; Hasunuma T; Kondo A
    Bioresour Technol; 2013 May; 135():403-9. PubMed ID: 22954707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw.
    Madadi M; Zhao K; Wang Y; Wang Y; Tang SW; Xia T; Jin N; Xu Z; Li G; Qi Z; Peng L; Xiong Z
    Carbohydr Polym; 2021 Aug; 265():118070. PubMed ID: 33966834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ethanol production from residual lignocellulosic fibers generated through the steam treatment of whole sorghum biomass.
    Boboescu IZ; Damay J; Chang JKW; Beigbeder JB; Duret X; Beauchemin S; Lalonde O; Lavoie JM
    Bioresour Technol; 2019 Nov; 292():121975. PubMed ID: 31445238
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
    Xu N; Zhang W; Ren S; Liu F; Zhao C; Liao H; Xu Z; Huang J; Li Q; Tu Y; Yu B; Wang Y; Jiang J; Qin J; Peng L
    Biotechnol Biofuels; 2012 Aug; 5(1):58. PubMed ID: 22883929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.