BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24968211)

  • 21. Label-free immunodetection with CMOS-compatible semiconducting nanowires.
    Stern E; Klemic JF; Routenberg DA; Wyrembak PN; Turner-Evans DB; Hamilton AD; LaVan DA; Fahmy TM; Reed MA
    Nature; 2007 Feb; 445(7127):519-22. PubMed ID: 17268465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lyotropic self-assembly of high-aspect-ratio semiconductor nanowires of single-crystal ZnO.
    Zhang S; Majewski PW; Keskar G; Pfefferle LD; Osuji CO
    Langmuir; 2011 Sep; 27(18):11616-21. PubMed ID: 21780786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective control of photoluminescence from ZnO nanowires by a-SiNx:H decoration.
    Huang R; Xu S; Wang X; Guo W; Song C; Song J; Ho KM; Du S; Wang N
    Opt Lett; 2012 Jan; 37(2):211-3. PubMed ID: 22854470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires.
    Tian JH; Hu J; Li SS; Zhang F; Liu J; Shi J; Li X; Tian ZQ; Chen Y
    Nanotechnology; 2011 Jun; 22(24):245601. PubMed ID: 21508463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexographic printing-assisted fabrication of ZnO nanowire devices.
    Lloyd JS; Fung CM; Deganello D; Wang RJ; Maffeis TG; Lau SP; Teng KS
    Nanotechnology; 2013 May; 24(19):195602. PubMed ID: 23579099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZnO nanowire-based antireflective coatings with double-nanotextured surfaces.
    Lee JW; Ye BU; Kim DY; Kim JK; Heo J; Jeong HY; Kim MH; Choi WJ; Baik JM
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1375-9. PubMed ID: 24467491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Converting graphene oxide monolayers into boron carbonitride nanosheets by substitutional doping.
    Lin TW; Su CY; Zhang XQ; Zhang W; Lee YH; Chu CW; Lin HY; Chang MT; Chen FR; Li LJ
    Small; 2012 May; 8(9):1384-91. PubMed ID: 22378619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures.
    Sun Y; Zhao Q; Gao J; Ye Y; Wang W; Zhu R; Xu J; Chen L; Yang J; Dai L; Liao ZM; Yu D
    Nanoscale; 2011 Oct; 3(10):4418-26. PubMed ID: 21931901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic study on experimental conditions for large-scale growth of aligned ZnO nanowires on nitrides.
    Song J; Wang X; Riedo E; Wang ZL
    J Phys Chem B; 2005 May; 109(20):9869-72. PubMed ID: 16852193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterointerfaces in semiconductor nanowires.
    Agarwal R
    Small; 2008 Nov; 4(11):1872-93. PubMed ID: 18932190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boron nitride nanotubes as templates for half-metal nanowires.
    Batista RJ; de Oliveira AB; Pereira NR; Paolini RS; Manhabosco TM
    J Phys Condens Matter; 2012 Apr; 24(16):165501. PubMed ID: 22447845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanowire-based thermoelectrics.
    Ali A; Chen Y; Vasiraju V; Vaddiraju S
    Nanotechnology; 2017 Jul; 28(28):282001. PubMed ID: 28627500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.
    Li GP; Chen R; Guo DL; Wong LM; Wang SJ; Sun HD; Wu T
    Nanoscale; 2011 Aug; 3(8):3170-7. PubMed ID: 21698326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple route to porous ZnO and ZnCdO nanowires.
    Shan CX; Liu Z; Zhang ZZ; Shen DZ; Hark SK
    J Phys Chem B; 2006 Jun; 110(23):11176-9. PubMed ID: 16771380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical trapping and integration of semiconductor nanowire assemblies in water.
    Pauzauskie PJ; Radenovic A; Trepagnier E; Shroff H; Yang P; Liphardt J
    Nat Mater; 2006 Feb; 5(2):97-101. PubMed ID: 16429143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced photocatalytic activity of metal coated ZnO nanowires.
    Pyne S; Sahoo GP; Bhui DK; Bar H; Sarkar P; Samanta S; Maity A; Misra A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():100-5. PubMed ID: 22465775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanowired Bioelectric Interfaces.
    Tian B; Lieber CM
    Chem Rev; 2019 Aug; 119(15):9136-9152. PubMed ID: 30995019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.