These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24968211)

  • 41. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings.
    Boinovich LB; Emelyanenko AM; Pashinin AS; Lee CH; Drelich J; Yap YK
    Langmuir; 2012 Jan; 28(2):1206-16. PubMed ID: 22149295
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface chemistry, structure, and electronic properties from microns to the atomic scale of axially doped semiconductor nanowires.
    Hjort M; Wallentin J; Timm R; Zakharov AA; Håkanson U; Andersen JN; Lundgren E; Samuelson L; Borgström MT; Mikkelsen A
    ACS Nano; 2012 Nov; 6(11):9679-89. PubMed ID: 23062066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformal Coverage of ZnO Nanowire Arrays by ZnMnO
    Rettenmaier K; Zickler GA; Berger T
    Chemphyschem; 2023 Nov; 24(21):e202300250. PubMed ID: 37534548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics.
    Yoon A; Hong WK; Lee T
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4101-5. PubMed ID: 18047128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.
    Sanders A; Blanchard P; Bertness K; Brubaker M; Dodson C; Harvey T; Herrero A; Rourke D; Schlager J; Sanford N; Chiaramonti AN; Davydov A; Motayed A; Tsvetkov D
    Nanotechnology; 2011 Nov; 22(46):465703. PubMed ID: 22025018
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electronic transport mechanism and photocurrent generations of single-crystalline InN nanowires.
    Lee S; Lee W; Seo K; Kim J; Han SH; Kim B
    Nanotechnology; 2008 Oct; 19(41):415202. PubMed ID: 21832639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Penetrating living cells using semiconductor nanowires.
    Pearton SJ; Lele T; Tseng Y; Ren F
    Trends Biotechnol; 2007 Nov; 25(11):481-2. PubMed ID: 17935806
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications.
    Porter JR; Henson A; Popat KC
    Biomaterials; 2009 Feb; 30(5):780-8. PubMed ID: 19012962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ZnO-ZnGa2O4 core-shell nanowire array for stable photoelectrochemical water splitting.
    Zhong M; Li Y; Yamada I; Delaunay JJ
    Nanoscale; 2012 Mar; 4(5):1509-14. PubMed ID: 22200054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Guided growth of horizontal ZnO nanowires with controlled orientations on flat and faceted sapphire surfaces.
    Tsivion D; Schvartzman M; Popovitz-Biro R; Joselevich E
    ACS Nano; 2012 Jul; 6(7):6433-45. PubMed ID: 22725665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio.
    Pan H; Feng YP
    ACS Nano; 2008 Nov; 2(11):2410-4. PubMed ID: 19206409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polar surface effects on the thermal conductivity of ZnO nanowires: a shell-like surface reconstruction-induced preserving mechanism.
    Jiang JW; Park HS; Rabczuk T
    Nanoscale; 2013 Nov; 5(22):11035-43. PubMed ID: 24071784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication of lateral electrodes on semiconductor nanowires through structurally matched insulation for functional optoelectronics.
    Sheng Y; Sun H; Wang J; Gao F; Wang J; Pan L; Pu L; Zheng Y; Shi Y
    Nanotechnology; 2013 Jan; 24(2):025204. PubMed ID: 23238688
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reliability enhancement of germanium nanowires using graphene as a protective layer: aspect of thermal stability.
    Lee JH; Choi SH; Patole SP; Jang Y; Heo K; Joo WJ; Yoo JB; Hwang SW; Whang D
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5069-74. PubMed ID: 24617670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application.
    Chen XY; Ling T; Du XW
    Nanoscale; 2012 Sep; 4(18):5602-7. PubMed ID: 22743779
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers.
    Athauda TJ; Hari P; Ozer RR
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6237-46. PubMed ID: 23758829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array.
    Kim H; Yong K
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13258-64. PubMed ID: 24274430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electron transport in high-resistance semiconductor nanowires through two-probe measurements.
    Lin YF; Chen TH; Chang CH; Chang YW; Chiu YC; Hung HC; Kai JJ; Liu Z; Fang J; Jian WB
    Phys Chem Chem Phys; 2010 Sep; 12(36):10928-32. PubMed ID: 20657947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.
    Pan H
    Nanoscale Res Lett; 2014; 9(1):531. PubMed ID: 25294975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interactions between semiconductor nanowires and living cells.
    Prinz CN
    J Phys Condens Matter; 2015 Jun; 27(23):233103. PubMed ID: 26010455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.