These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24968309)

  • 1. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.
    Mishra NK; Chang J; Zhao PX
    PLoS One; 2014; 9(6):e100278. PubMed ID: 24968309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction the Substrate Specificities of Membrane Transport Proteins Based on Support Vector Machine and Hybrid Features.
    Li L; Li J; Xiao W; Li Y; Qin Y; Zhou S; Yang H
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):947-953. PubMed ID: 26571537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using word embedding technique to efficiently represent protein sequences for identifying substrate specificities of transporters.
    Nguyen TT; Le NQ; Ho QT; Phan DV; Ou YY
    Anal Biochem; 2019 Jul; 577():73-81. PubMed ID: 31022378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TooT-T: discrimination of transport proteins from non-transport proteins.
    Alballa M; Butler G
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):25. PubMed ID: 32321420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation.
    Xu R; Zhou J; Wang H; He Y; Wang X; Liu B
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S10. PubMed ID: 25708928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCMMTP: identifying and characterizing membrane transport proteins using propensity scores of dipeptides.
    Liou YF; Vasylenko T; Yeh CL; Lin WC; Chiu SH; Charoenkwan P; Shu LS; Ho SY; Huang HL
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S6. PubMed ID: 26677931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of transporter targets using efficient RBF networks with PSSM profiles and biochemical properties.
    Chen SA; Ou YY; Lee TY; Gromiha MM
    Bioinformatics; 2011 Aug; 27(15):2062-7. PubMed ID: 21653515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support vector machine (SVM) based multiclass prediction with basic statistical analysis of plasminogen activators.
    Muthukrishnan S; Puri M; Lefevre C
    BMC Res Notes; 2014 Jan; 7():63. PubMed ID: 24468032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation.
    Li Y; Wang Z; You ZH; Li LP; Hu X
    Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.
    Suresh V; Parthasarathy S
    Protein Pept Lett; 2014; 21(8):736-42. PubMed ID: 23855661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens.
    Garg A; Gupta D
    BMC Bioinformatics; 2008 Jan; 9():62. PubMed ID: 18226234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying substrate specificities of membrane transporters from Arabidopsis thaliana.
    Schaadt NS; Christoph J; Helms V
    J Chem Inf Model; 2010 Oct; 50(10):1899-905. PubMed ID: 20925375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of efflux proteins using efficient radial basis function networks with position-specific scoring matrices and biochemical properties.
    Ou YY; Chen SA; Chang YM; Velmurugan D; Fukui K; Michael Gromiha M
    Proteins; 2013 Sep; 81(9):1634-43. PubMed ID: 23670815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mannose interacting residues using local composition.
    Agarwal S; Mishra NK; Singh H; Raghava GP
    PLoS One; 2011; 6(9):e24039. PubMed ID: 21931639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.