BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24968371)

  • 1. Online kinematic regulation by visual feedback for grasp versus transport during reach-to-pinch.
    Nataraj R; Pasluosta C; Li ZM
    Hum Mov Sci; 2014 Aug; 36():134-53. PubMed ID: 24968371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of aperture closure initiation during reach-to-grasp movements under manipulations of visual feedback and trunk involvement in Parkinson's disease.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2010 Mar; 201(3):509-25. PubMed ID: 19902195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of speed manipulation on the control of aperture closure during reach-to-grasp movements.
    Rand MK; Squire LM; Stelmach GE
    Exp Brain Res; 2006 Sep; 174(1):74-85. PubMed ID: 16565810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative model of transport-aperture coordination during reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2008 Jun; 188(2):263-74. PubMed ID: 18438652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects.
    Gentilucci M; Toni I; Chieffi S; Pavesi G
    Exp Brain Res; 1994; 99(3):483-500. PubMed ID: 7957728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in reach-to-grasp movements with partial visual occlusion.
    Runnarong N; Tretriluxana J; Waiyasil W; Sittisupapong P; Tretriluxana S
    PLoS One; 2019; 14(8):e0221320. PubMed ID: 31461484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase dependence of transport-aperture coordination variability reveals control strategy of reach-to-grasp movements.
    Rand MK; Shimansky YP; Hossain AB; Stelmach GE
    Exp Brain Res; 2010 Nov; 207(1-2):49-63. PubMed ID: 20931181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective perturbation of visual input during prehension movements. 1. The effects of changing object position.
    Paulignan Y; MacKenzie C; Marteniuk R; Jeannerod M
    Exp Brain Res; 1991; 83(3):502-12. PubMed ID: 2026193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reach-to-grasp kinematics and kinetics with and without visual feedback in early-stage Alzheimer's disease.
    Zhang J; Xiao Y; Li ZM; Wei N; Lin L; Li K
    J Neuroeng Rehabil; 2022 Nov; 19(1):121. PubMed ID: 36357939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of carpal tunnel syndrome on reach-to-pinch performance.
    Nataraj R; Evans PJ; Seitz WH; Li ZM
    PLoS One; 2014; 9(3):e92063. PubMed ID: 24632925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tactile input of the hand and the control of reaching to grasp movements.
    Gentilucci M; Toni I; Daprati E; Gangitano M
    Exp Brain Res; 1997 Mar; 114(1):130-7. PubMed ID: 9125458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.
    Copley-Mills J; Connolly JD; Cavina-Pratesi C
    Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Earlier and greater hand pre-shaping in the elderly: a study based on kinematic analysis of reaching movements to grasp objects.
    Tamaru Y; Naito Y; Nishikawa T
    Psychogeriatrics; 2017 Nov; 17(6):382-388. PubMed ID: 28295921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of three-joint digit movements for rapid finger-thumb grasp.
    Cole KJ; Abbs JH
    J Neurophysiol; 1986 Jun; 55(6):1407-23. PubMed ID: 3734863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of spatiotemporal variability during prehension movements: effects of object size and distance.
    Kudoh N; Hattori M; Numata N; Maruyama K
    Exp Brain Res; 1997 Dec; 117(3):457-64. PubMed ID: 9438714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of aperture closure initiation during trunk-assisted reach-to-grasp movements.
    Rand MK; Van Gemmert AW; Hossain AB; Shimansky YP; Stelmach GE
    Exp Brain Res; 2012 Jun; 219(2):293-304. PubMed ID: 22526948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the reach-to-grasp movement between children and adults: a kinematic study.
    Zoia S; Pezzetta E; Blason L; Scabar A; Carrozzi M; Bulgheroni M; Castiello U
    Dev Neuropsychol; 2006; 30(2):719-38. PubMed ID: 16995833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp.
    Karl JM; Whishaw IQ
    Exp Brain Res; 2014 Oct; 232(10):3301-16. PubMed ID: 24969613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.