BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24968375)

  • 1. Portable haptic interface with omni-directional movement and force capability.
    Avizzano CA; Satler M; Ruffaldi E
    IEEE Trans Haptics; 2014; 7(2):110-20. PubMed ID: 24968375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and development of an affordable haptic robot with force-feedback and compliant actuation to improve therapy for patients with severe hemiparesis.
    Theriault A; Nagurka M; Johnson MJ
    IEEE Trans Haptics; 2014; 7(2):161-74. PubMed ID: 24968380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a robotic mobility system with a modular haptic feedback approach to promote socialization in children.
    Chen X; Ragonesi C; Galloway JC; Agrawal SK
    IEEE Trans Haptics; 2014; 7(2):131-9. PubMed ID: 24968377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction.
    Chen D; Song A; Tian L; Yu Y; Zhu L
    IEEE Trans Haptics; 2018; 11(4):555-567. PubMed ID: 29993931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining Haptic and Bang-Bang Braking Actions for Passive Robotic Walker Path Following.
    Andreetto M; Divan S; Ferrari F; Fontanelli D; Palopoli L; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(4):542-553. PubMed ID: 31034420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrotactile Compliance Feedback for Tangential Force Interaction.
    Heo S; Lee G
    IEEE Trans Haptics; 2017; 10(3):444-455. PubMed ID: 28113602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of haptic feedback for the integration of intentions in shared task execution.
    Groten R; Feth D; Klatzky RL; Peer A
    IEEE Trans Haptics; 2013; 6(1):94-105. PubMed ID: 24808271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haptic perception of users with low vision and their needs in haptic-incorporated user interfaces.
    Kim HN; Smith-Jackson T; Terpenny J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):195-208. PubMed ID: 24749554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics modeling for parallel haptic interfaces with force sensing and control.
    Bernstein N; Lawrence D; Pao L
    IEEE Trans Haptics; 2013; 6(4):429-39. PubMed ID: 24808395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Whole-Hand Kinesthetic Feedback: A Survey of Force Feedback Gloves.
    Wang D; Song M; Naqash A; Zheng Y; Xu W; Zhang Y
    IEEE Trans Haptics; 2019; 12(2):189-204. PubMed ID: 30452380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haptic feedback for enhancing realism of walking simulations.
    Turchet L; Burelli P; Serafin S
    IEEE Trans Haptics; 2013; 6(1):35-45. PubMed ID: 24808266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.
    Kim K; Lee S
    Skin Res Technol; 2015 May; 21(2):164-74. PubMed ID: 25087469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibrotactile rendering of splashing fluids.
    Cirio G; Marchal M; Lécuyer A; Cooperstock JR
    IEEE Trans Haptics; 2013; 6(1):117-22. PubMed ID: 24808273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks.
    Quek ZF; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2019; 12(2):102-113. PubMed ID: 30281480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customization, control, and characterization of a commercial haptic device for high-fidelity rendering of weak forces.
    Gurari N; Baud-Bovy G
    J Neurosci Methods; 2014 Sep; 235():169-80. PubMed ID: 25043509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.