These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24968385)

  • 1. Motor learning perspectives on haptic training for the upper extremities.
    Williams CK; Carnahan H
    IEEE Trans Haptics; 2014; 7(2):240-50. PubMed ID: 24968385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Combined Versus Singular Verbal or Haptic Feedback on Acquisition, Retention, Difficulty, and Competence Perceptions in Motor Learning.
    Frikha M; Chaâri N; Elghoul Y; Mohamed-Ali HH; Zinkovsky AV
    Percept Mot Skills; 2019 Aug; 126(4):713-732. PubMed ID: 31033405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially Separating Haptic Guidance From Task Dynamics Through Wearable Devices.
    Pezent E; Fani S; Clark J; Bianchi M; O'Malley MK
    IEEE Trans Haptics; 2019; 12(4):581-593. PubMed ID: 31144646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Full and Partial Haptic Guidance Improves Handwriting Skills Development.
    Teranishi A; Korres G; Park W; Eid M
    IEEE Trans Haptics; 2018; 11(4):509-517. PubMed ID: 29994720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.
    Sigrist R; Rauter G; Marchal-Crespo L; Riener R; Wolf P
    Exp Brain Res; 2015 Mar; 233(3):909-25. PubMed ID: 25511166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic Feedback, Performance and Arousal: A Comparison Study in an Immersive VR Motor Skill Training Task.
    Radhakrishnan U; Kuang L; Koumaditis K; Chinello F; Pacchierotti C
    IEEE Trans Haptics; 2024; 17(2):249-262. PubMed ID: 37747855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of training time, sensory loss and pain on human motor learning.
    Boudreau SA; Hennings K; Svensson P; Sessle BJ; Arendt-Nielsen L
    J Oral Rehabil; 2010 Sep; 37(9):704-18. PubMed ID: 20492438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.
    Cano-de-la-Cuerda R; Molero-Sánchez A; Carratalá-Tejada M; Alguacil-Diego IM; Molina-Rueda F; Miangolarra-Page JC; Torricelli D
    Neurologia; 2015; 30(1):32-41. PubMed ID: 22341985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science.
    Nielsen JB; Willerslev-Olsen M; Christiansen L; Lundbye-Jensen J; Lorentzen J
    J Mot Behav; 2015; 47(1):7-17. PubMed ID: 25575219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task.
    Sigrist R; Rauter G; Riener R; Wolf P
    J Mot Behav; 2013; 45(6):455-72. PubMed ID: 24006910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of haptic feedback when manipulating nonrigid objects.
    Danion F; Diamond JS; Flanagan JR
    J Neurophysiol; 2012 Jan; 107(1):433-41. PubMed ID: 22013237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of haptic feedback impairs control of hand posture: a study in chronically deafferented individuals when grasping and lifting objects.
    Miall RC; Rosenthal O; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2019 Sep; 237(9):2167-2184. PubMed ID: 31209510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human adaptation to interaction forces in visuo-motor coordination.
    Huang FC; Gillespie RB; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):390-7. PubMed ID: 17009499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of an augmented virtual reality and haptic control interface for psychomotor training.
    Kaber D; Tupler LA; Clamann M; Gil GH; Zhu B; Swangnetr M; Jeon W; Zhang Y; Qin X; Ma W; Lee YS
    Assist Technol; 2014; 26(1):51-60. PubMed ID: 24800454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptic Training: Which Types Facilitate (re)Learning of Which Motor Task and for Whom? Answers by a Review.
    Basalp E; Wolf P; Marchal-Crespo L
    IEEE Trans Haptics; 2021; 14(4):722-739. PubMed ID: 34388095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.
    Rosati G; Oscari F; Pacchierotti C; Prattichizzo D
    IEEE Trans Haptics; 2014; 7(2):251-63. PubMed ID: 24968386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin Stretch Haptic Feedback to Convey Closure Information in Anthropomorphic, Under-Actuated Upper Limb Soft Prostheses.
    Battaglia E; Clark JP; Bianchi M; Catalano MG; Bicchi A; O'Malley MK
    IEEE Trans Haptics; 2019; 12(4):508-520. PubMed ID: 31071053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Comparisons of Upper-Limb Motor Learning Performance Among Three Types of Haptic Guidance With Non-Assisted Condition in Spiral Drawing Task.
    Muramatsu H; Itaguchi Y; Yamada C; Yoshizawa H; Katsura S
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2545-2552. PubMed ID: 38995712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.