These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 24969065)

  • 1. Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors.
    Wang L; Chen X; Yu A; Zhang Y; Ding J; Lu W
    Sci Rep; 2014 Jun; 4():5470. PubMed ID: 24969065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband graphene terahertz modulators enabled by intraband transitions.
    Sensale-Rodriguez B; Yan R; Kelly MM; Fang T; Tahy K; Hwang WS; Jena D; Liu L; Xing HG
    Nat Commun; 2012 Apr; 3():780. PubMed ID: 22510685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive of the quantum capacitance effect on the excitation of plasma waves in graphene transistors with scaling limit.
    Wang L; Chen X; Hu Y; Wang SW; Lu W
    Nanoscale; 2015 Apr; 7(16):7284-90. PubMed ID: 25813396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic photo-conductance triggered by the plasmonic effect in graphene for terahertz detection.
    Wang L; Chen X; Lu W
    Nanotechnology; 2016 Jan; 27(3):035205. PubMed ID: 26655800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature Plasmon-Assisted Resonant THz Detection in Single-Layer Graphene Transistors.
    Caridad JM; Castelló Ó; López Baptista SM; Taniguchi T; Watanabe K; Roskos HG; Delgado-Notario JA
    Nano Lett; 2024 Jan; 24(3):935-942. PubMed ID: 38165655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene field-effect transistors as room-temperature terahertz detectors.
    Vicarelli L; Vitiello MS; Coquillat D; Lombardo A; Ferrari AC; Knap W; Polini M; Pellegrini V; Tredicucci A
    Nat Mater; 2012 Oct; 11(10):865-71. PubMed ID: 22961203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunnel field-effect transistors for sensitive terahertz detection.
    Gayduchenko I; Xu SG; Alymov G; Moskotin M; Tretyakov I; Taniguchi T; Watanabe K; Goltsman G; Geim AK; Fedorov G; Svintsov D; Bandurin DA
    Nat Commun; 2021 Jan; 12(1):543. PubMed ID: 33483488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
    Xia F; Farmer DB; Lin YM; Avouris P
    Nano Lett; 2010 Feb; 10(2):715-8. PubMed ID: 20092332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct nanoscopic observation of plasma waves in the channel of a graphene field-effect transistor.
    Soltani A; Kuschewski F; Bonmann M; Generalov A; Vorobiev A; Ludwig F; Wiecha MM; Čibiraitė D; Walla F; Winnerl S; Kehr SC; Eng LM; Stake J; Roskos HG
    Light Sci Appl; 2020; 9():97. PubMed ID: 32549977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies.
    Pogna EAA; Pistore V; Viti L; Li L; Davies AG; Linfield EH; Vitiello MS
    Nat Commun; 2024 Mar; 15(1):2373. PubMed ID: 38490988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metasurface-Assisted Terahertz Sensing.
    Wang Q; Chen Y; Mao J; Yang F; Wang N
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Chip Integration of a Plasmonic FET Source and a Nano-Patch Antenna for Efficient Terahertz Wave Radiation.
    Crabb J; Cantos-Roman X; Aizin G; Jornet JM
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-Wave Terahertz Detection Mediated by Topological Insulators Surface States.
    Viti L; Coquillat D; Politano A; Kokh KA; Aliev ZS; Babanly MB; Tereshchenko OE; Knap W; Chulkov EV; Vitiello MS
    Nano Lett; 2016 Jan; 16(1):80-7. PubMed ID: 26678677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire-based field effect transistors for terahertz detection and imaging systems.
    Romeo L; Coquillat D; Pea M; Ercolani D; Beltram F; Sorba L; Knap W; Tredicucci A; Vitiello MS
    Nanotechnology; 2013 May; 24(21):214005. PubMed ID: 23618953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Terahertz Deep Subwavelength Imaging Based on a Graphene Monolayer.
    Tang HH; Huang TJ; Liu JY; Tan Y; Liu PK
    Sci Rep; 2017 Apr; 7():46283. PubMed ID: 28397815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications.
    Shur M; Aizin G; Otsuji T; Ryzhii V
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-broadband terahertz bandpass filter with dynamically tunable attenuation based on a graphene-metal hybrid metasurface.
    Huang W; Luo X; Lu Y; Hu F; Li G
    Appl Opt; 2021 Aug; 60(22):6366-6370. PubMed ID: 34612870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Terahertz Devices and Sensors Based on Carbon Electronics.
    Xu W; Fang W; Shi T; Ming X; Wang Y; Xie L; Peng L; Chen HT; Ying Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12560-12569. PubMed ID: 36847242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.