These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24969472)

  • 1. Event-Related Potential, Time-frequency, and Functional Connectivity Facets of Local and Global Auditory Novelty Processing: An Intracranial Study in Humans.
    El Karoui I; King JR; Sitt J; Meyniel F; Van Gaal S; Hasboun D; Adam C; Navarro V; Baulac M; Dehaene S; Cohen L; Naccache L
    Cereb Cortex; 2015 Nov; 25(11):4203-12. PubMed ID: 24969472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical responses to auditory novelty across task conditions: An intracranial electrophysiology study.
    Nourski KV; Steinschneider M; Rhone AE; Krause BM; Kawasaki H; Banks MI
    Hear Res; 2021 Jan; 399():107911. PubMed ID: 32081413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.
    Potes C; Brunner P; Gunduz A; Knight RT; Schalk G
    Neuroimage; 2014 Aug; 97():188-95. PubMed ID: 24768933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal dynamics of auditory information processing in the insular cortex: an intracranial EEG study using an oddball paradigm.
    Citherlet D; Boucher O; Tremblay J; Robert M; Gallagher A; Bouthillier A; Lepore F; Nguyen DK
    Brain Struct Funct; 2020 Jun; 225(5):1537-1559. PubMed ID: 32347366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory event-related potentials and α oscillations in the psychosis prodrome: neuronal generator patterns during a novelty oddball task.
    Kayser J; Tenke CE; Kroppmann CJ; Alschuler DM; Fekri S; Ben-David S; Corcoran CM; Bruder GE
    Int J Psychophysiol; 2014 Feb; 91(2):104-20. PubMed ID: 24333745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the insula in top-down processing: an intracranial EEG study using a visual oddball detection paradigm.
    Citherlet D; Boucher O; Tremblay J; Robert M; Gallagher A; Bouthillier A; Lepore F; Nguyen DK
    Brain Struct Funct; 2019 Jul; 224(6):2045-2059. PubMed ID: 31129871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The modulation of auditory novelty processing by working memory load in school age children and adults: a combined behavioral and event-related potential study.
    Ruhnau P; Wetzel N; Widmann A; Schröger E
    BMC Neurosci; 2010 Oct; 11():126. PubMed ID: 20929535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An event-related potential study on the impairment of automatic processing of auditory input in schizophrenia.
    Shutara Y; Koga Y; Fujita K; Takeuchi H; Mochida M; Takemasa K
    Brain Topogr; 1996; 8(3):285-9. PubMed ID: 8728420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings.
    Trautner P; Rosburg T; Dietl T; Fell J; Korzyukov OA; Kurthen M; Schaller C; Elger CE; Boutros NN
    Neuroimage; 2006 Aug; 32(2):790-8. PubMed ID: 16809054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Connectivity and local activity within the fronto-posterior brain network in schizophrenia.
    Sharma A; Weisbrod M; Bender S
    Suppl Clin Neurophysiol; 2013; 62():181-96. PubMed ID: 24053040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study.
    Justen C; Herbert C
    BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of auditory discrimination and novelty processing in physiological aging.
    Raggi A; Tasca D; Rundo F; Ferri R
    Behav Neurol; 2013; 27(2):193-200. PubMed ID: 23242351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central auditory processing during chronic tinnitus as indexed by topographical maps of the mismatch negativity obtained with the multi-feature paradigm.
    Mahmoudian S; Farhadi M; Najafi-Koopaie M; Darestani-Farahani E; Mohebbi M; Dengler R; Esser KH; Sadjedi H; Salamat B; Danesh AA; Lenarz T
    Brain Res; 2013 Aug; 1527():161-73. PubMed ID: 23810454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mismatch negativity (MMN) potential as a tool for the functional mapping of temporal lobe epilepsies.
    Lopes R; Simões MR; Ferraz L; Leal AJ
    Epilepsy Behav; 2014 Apr; 33():87-93. PubMed ID: 24632428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the neural basis of automatic auditory and visual time perception: ERP evidence from an across-modal delayed response oddball task.
    Chen Y; Huang X; Luo Y; Peng C; Liu C
    Brain Res; 2010 Apr; 1325():100-11. PubMed ID: 20170647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of acetylcholine and serotonin in novelty processing using an oddball paradigm.
    Caldenhove S; Borghans LGJM; Blokland A; Sambeth A
    Behav Brain Res; 2017 Jul; 331():199-204. PubMed ID: 28511977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural substrates of normal and impaired preattentive sensory discrimination in large cohorts of nonpsychiatric subjects and schizophrenia patients as indexed by MMN and P3a change detection responses.
    Takahashi H; Rissling AJ; Pascual-Marqui R; Kirihara K; Pela M; Sprock J; Braff DL; Light GA
    Neuroimage; 2013 Feb; 66():594-603. PubMed ID: 23085112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes.
    Jemel B; Achenbach C; Müller BW; Röpcke B; Oades RD
    Brain Topogr; 2002; 15(1):13-27. PubMed ID: 12371672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonuniform high-gamma (60-500 Hz) power changes dissociate cognitive task and anatomy in human cortex.
    Gaona CM; Sharma M; Freudenburg ZV; Breshears JD; Bundy DT; Roland J; Barbour DL; Schalk G; Leuthardt EC
    J Neurosci; 2011 Feb; 31(6):2091-100. PubMed ID: 21307246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory deviance detection in the human insula: An intracranial EEG study.
    Blenkmann AO; Collavini S; Lubell J; Llorens A; Funderud I; Ivanovic J; Larsson PG; Meling TR; Bekinschtein T; Kochen S; Endestad T; Knight RT; Solbakk AK
    Cortex; 2019 Dec; 121():189-200. PubMed ID: 31629197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.