These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 24969662)

  • 1. Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications.
    Idris NM; Jayakumar MK; Bansal A; Zhang Y
    Chem Soc Rev; 2015 Mar; 44(6):1449-78. PubMed ID: 24969662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb,Er/Tm upconversion nanoparticles.
    Gnanasammandhan MK; Idris NM; Bansal A; Huang K; Zhang Y
    Nat Protoc; 2016 Apr; 11(4):688-713. PubMed ID: 26963631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway.
    Hou Z; Zhang Y; Deng K; Chen Y; Li X; Deng X; Cheng Z; Lian H; Li C; Lin J
    ACS Nano; 2015 Mar; 9(3):2584-99. PubMed ID: 25692960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish.
    Jayakumar MK; Bansal A; Li BN; Zhang Y
    Nanomedicine (Lond); 2015; 10(7):1051-61. PubMed ID: 25929564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared upconversion nanoparticles for bio-applications.
    Dou QQ; Guo HC; Ye E
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():635-43. PubMed ID: 25491873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy.
    Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J
    Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy.
    Lucky SS; Muhammad Idris N; Li Z; Huang K; Soo KC; Zhang Y
    ACS Nano; 2015 Jan; 9(1):191-205. PubMed ID: 25564723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells.
    Zhao Z; Han Y; Lin C; Hu D; Wang F; Chen X; Chen Z; Zheng N
    Chem Asian J; 2012 Apr; 7(4):830-7. PubMed ID: 22279027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photodynamic inactivation of viruses using upconversion nanoparticles.
    Lim ME; Lee YL; Zhang Y; Chu JJ
    Biomaterials; 2012 Feb; 33(6):1912-20. PubMed ID: 22153019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Cellular Ablation by Attenuating Hypoxia Status and Reprogramming Tumor-Associated Macrophages via NIR Light-Responsive Upconversion Nanocrystals.
    Ai X; Hu M; Wang Z; Lyu L; Zhang W; Li J; Yang H; Lin J; Xing B
    Bioconjug Chem; 2018 Apr; 29(4):928-938. PubMed ID: 29466856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of near-infrared-responsive hexagonal-phase upconversion nanoparticles with controllable shape and luminescence efficiency for theranostic applications.
    Choi J; Kim SY
    J Biomater Appl; 2022 Oct; 37(4):646-658. PubMed ID: 35699103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of near infrared light triggered nanodumbbell for cancer photodynamic therapy.
    Hou B; Zheng B; Yang W; Dong C; Wang H; Chang J
    J Colloid Interface Sci; 2017 May; 494():363-372. PubMed ID: 28167424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers.
    Idris NM; Gnanasammandhan MK; Zhang J; Ho PC; Mahendran R; Zhang Y
    Nat Med; 2012 Oct; 18(10):1580-5. PubMed ID: 22983397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid coated upconverting nanoparticles as NIR remote controlled transducer for simultaneous photodynamic therapy and cell imaging.
    Wang H; Dong C; Zhao P; Wang S; Liu Z; Chang J
    Int J Pharm; 2014 May; 466(1-2):307-13. PubMed ID: 24657139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.
    Liang L; Lu Y; Zhang R; Care A; Ortega TA; Deyev SM; Qian Y; Zvyagin AV
    Acta Biomater; 2017 Mar; 51():461-470. PubMed ID: 28063989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy.
    Wang M; Chen Z; Zheng W; Zhu H; Lu S; Ma E; Tu D; Zhou S; Huang M; Chen X
    Nanoscale; 2014 Jul; 6(14):8274-82. PubMed ID: 24933297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers.
    Jayakumar MK; Idris NM; Zhang Y
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8483-8. PubMed ID: 22582171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.
    Zheng B; Wang H; Pan H; Liang C; Ji W; Zhao L; Chen H; Gong X; Wu X; Chang J
    ACS Nano; 2017 Dec; 11(12):11898-11907. PubMed ID: 29064662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles.
    Zhao N; Wu B; Hu X; Xing D
    Biomaterials; 2017 Oct; 141():40-49. PubMed ID: 28666101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy.
    Hu P; Wu T; Fan W; Chen L; Liu Y; Ni D; Bu W; Shi J
    Biomaterials; 2017 Oct; 141():86-95. PubMed ID: 28668609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.