These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24969744)

  • 1. Antigen exposure leads to rigidification of germline antibody combining site.
    Gill J; Jayaswal P; Salunke DM
    J Bioinform Comput Biol; 2014 Jun; 12(3):1450006. PubMed ID: 24969744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification.
    Jeliazkov JR; Sljoka A; Kuroda D; Tsuchimura N; Katoh N; Tsumoto K; Gray JJ
    Front Immunol; 2018; 9():413. PubMed ID: 29545810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach for studying antibody-antigen interactions without prior structural information: the anti-testosterone binding antibody as a case study.
    Koivuniemi A; Takkinen K; Nevanen T
    Proteins; 2017 Feb; 85(2):322-331. PubMed ID: 27936519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility.
    Babor M; Kortemme T
    Proteins; 2009 Jun; 75(4):846-58. PubMed ID: 19194863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering evolution of immune recognition in antibodies.
    Kaur H; Sain N; Mohanty D; Salunke DM
    BMC Struct Biol; 2018 Dec; 18(1):19. PubMed ID: 30563492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the Diversity of the CDR-H3 Loop Conformational Ensembles in Relationship to Antibody Binding Properties.
    Fernández-Quintero ML; Loeffler JR; Kraml J; Kahler U; Kamenik AS; Liedl KR
    Front Immunol; 2018; 9():3065. PubMed ID: 30666252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes.
    Robin G; Sato Y; Desplancq D; Rochel N; Weiss E; Martineau P
    J Mol Biol; 2014 Nov; 426(22):3729-3743. PubMed ID: 25174334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of antibodies of known structure suggests a lack of correspondence between the residues in contact with the antigen and those modified by somatic hypermutation.
    Ramirez-Benitez MC; Almagro JC
    Proteins; 2001 Nov; 45(3):199-206. PubMed ID: 11599023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elucidation of the mechanistic basis of degeneracy in the primary humoral response.
    Khan T; Salunke DM
    J Immunol; 2012 Feb; 188(4):1819-27. PubMed ID: 22266283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of antigen-binding antibody fragments.
    Burkovitz A; Leiderman O; Sela-Culang I; Byk G; Ofran Y
    J Immunol; 2013 Mar; 190(5):2327-34. PubMed ID: 23359499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigen binding by conformational selection in near-germline antibodies.
    Blackler RJ; Müller-Loennies S; Pokorny-Lehrer B; Legg MSG; Brade L; Brade H; Kosma P; Evans SV
    J Biol Chem; 2022 May; 298(5):101901. PubMed ID: 35395245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response.
    Sethi DK; Agarwal A; Manivel V; Rao KV; Salunke DM
    Immunity; 2006 Apr; 24(4):429-38. PubMed ID: 16618601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The imprint of somatic hypermutation on the repertoire of human germline V genes.
    Tomlinson IM; Walter G; Jones PT; Dear PH; Sonnhammer EL; Winter G
    J Mol Biol; 1996 Mar; 256(5):813-17. PubMed ID: 8601832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating allostery in molecular recognition: insights from a computational study of multiple antibody-antigen complexes.
    Corrada D; Morra G; Colombo G
    J Phys Chem B; 2013 Jan; 117(2):535-52. PubMed ID: 23240736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human germline antibody gene segments encode polyspecific antibodies.
    Willis JR; Briney BS; DeLuca SL; Crowe JE; Meiler J
    PLoS Comput Biol; 2013 Apr; 9(4):e1003045. PubMed ID: 23637590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine cluster introduction on framework region in anti-lysozyme antibody improved association rate constant by changing conformational diversity of CDR loops.
    Maeta S; Nakakido M; Matsuura H; Sakai N; Hirata K; Kuroda D; Fukunaga A; Tsumoto K
    Protein Sci; 2023 Sep; 32(9):e4745. PubMed ID: 37550885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do antibody CDR loops change conformation upon binding?
    Liu C; Denzler LM; Hood OEC; Martin ACR
    MAbs; 2024; 16(1):2322533. PubMed ID: 38477253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in antibody Fab fragments upon binding and their consequences on the performance of docking algorithms.
    Barozet A; Bianciotto M; Siméon T; Minoux H; Cortés J
    Immunol Lett; 2018 Aug; 200():5-15. PubMed ID: 29885326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
    Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL
    PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based cross-docking analysis of antibody-antigen interactions.
    Kilambi KP; Gray JJ
    Sci Rep; 2017 Aug; 7(1):8145. PubMed ID: 28811664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.