These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 2496980)
21. Regulatory Structure of the Biosynthetic Pathway for the Aspartate Family of Amino Acids in Lemna paucicostata Hegelm. 6746, with Special Reference to the Role of Aspartokinase. Giovanelli J; Mudd SH; Datko AH Plant Physiol; 1989 Aug; 90(4):1584-99. PubMed ID: 16666969 [TBL] [Abstract][Full Text] [Related]
22. A possible role of the effect of methionine on the activity of aspartokinase in sporulation of a Streptomyces fradiae mutant. Vargha G Acta Biol Hung; 1997; 48(3):281-8. PubMed ID: 9406608 [TBL] [Abstract][Full Text] [Related]
23. Participation of lysine-sensitive aspartokinase in threonine production by S-2-aminoethyl cysteine-resistant mutants of Serratia marcescens. Komatsubara S; Kisumi M; Chibata I Appl Environ Microbiol; 1979 Nov; 38(5):777-82. PubMed ID: 232391 [TBL] [Abstract][Full Text] [Related]
24. Expression in Escherichia coli, purification and kinetic analysis of the aspartokinase and aspartate semialdehyde dehydrogenase from the rifamycin SV-producing Amycolatopsis mediterranei U32. Zhang WW; Jiang WH; Zhao GP; Yang YL; Chiao JS Appl Microbiol Biotechnol; 2000 Jul; 54(1):52-8. PubMed ID: 10952005 [TBL] [Abstract][Full Text] [Related]
25. Desensitization of Bacillus subtilis aspartokinase I to allosteric inhibition by meso-diaminopimelate allows aspartokinase I to function in amino acid biosynthesis during exponential growth. Zhang JJ; Paulus H J Bacteriol; 1990 Aug; 172(8):4690-3. PubMed ID: 2165481 [TBL] [Abstract][Full Text] [Related]
26. Identification and expression of a cDNA from Daucus carota encoding a bifunctional aspartokinase-homoserine dehydrogenase. Weisemann JM; Matthews BF Plant Mol Biol; 1993 May; 22(2):301-12. PubMed ID: 8507831 [TBL] [Abstract][Full Text] [Related]
27. Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. Pavelka MS; Jacobs WR J Bacteriol; 1996 Nov; 178(22):6496-507. PubMed ID: 8932306 [TBL] [Abstract][Full Text] [Related]
28. Aspartokinase III, a new isozyme in Bacillus subtilis 168. Graves LM; Switzer RL J Bacteriol; 1990 Jan; 172(1):218-23. PubMed ID: 2152900 [TBL] [Abstract][Full Text] [Related]
29. Transductional construction of a threonine-hyperproducing strain of Serratia marcescens: lack of feedback controls of three aspartokinases and two homoserine dehydrogenases. Komatsubara S; Kisumi M; Chibata I Appl Environ Microbiol; 1983 May; 45(5):1445-52. PubMed ID: 6307143 [TBL] [Abstract][Full Text] [Related]
30. Threonine production by regulatory mutants of Serratia marcescens. Komatsubara S; Kisumi M; Murata K; Chibata I Appl Environ Microbiol; 1978 May; 35(5):834-40. PubMed ID: 350154 [TBL] [Abstract][Full Text] [Related]
31. Transductional construction of a threonine-producing strain of Serratia marcescens. Komatsubara S; Kisumi M; Chibata I Appl Environ Microbiol; 1979 Dec; 38(6):1045-51. PubMed ID: 393167 [TBL] [Abstract][Full Text] [Related]
32. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds. Varisi VA; Camargos LS; Aguiar LF; Christofoleti RM; Medici LO; Azevedo RA Plant Physiol Biochem; 2008 Jan; 46(1):11-8. PubMed ID: 18006325 [TBL] [Abstract][Full Text] [Related]
33. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli. Shames SL; Ash DE; Wedler FC; Villafranca JJ J Biol Chem; 1984 Dec; 259(24):15331-9. PubMed ID: 6150934 [TBL] [Abstract][Full Text] [Related]
34. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Jakobsen OM; Brautaset T; Degnes KF; Heggeset TM; Balzer S; Flickinger MC; Valla S; Ellingsen TE Appl Environ Microbiol; 2009 Feb; 75(3):652-61. PubMed ID: 19060158 [TBL] [Abstract][Full Text] [Related]
35. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of L-isoleucine biosynthesis. Dong X; Zhao Y; Zhao J; Wang X J Ind Microbiol Biotechnol; 2016 Jun; 43(6):873-85. PubMed ID: 27033538 [TBL] [Abstract][Full Text] [Related]
36. [Control of the metabolic pathway of threonine in E coli. Application of biotechnology]. Raïs B; Mazat JP Acta Biotheor; 1995 Jun; 43(1-2):143-53. PubMed ID: 7709683 [TBL] [Abstract][Full Text] [Related]
37. A hybrid proteolytic fragment of Escherichia coli aspartokinase I-homoserine dehydrogenase I. Structure, inhibition pattern, dissociation properties, and generation of two homodimers. Fazel A; Guillou Y; Cohen GN J Biol Chem; 1983 Nov; 258(22):13570-4. PubMed ID: 6315703 [TBL] [Abstract][Full Text] [Related]
38. Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. Malumbres M; Martín JF FEMS Microbiol Lett; 1996 Oct; 143(2-3):103-14. PubMed ID: 8837462 [TBL] [Abstract][Full Text] [Related]
39. Expression of the gene for Bacillus subtilis aspartokinase II in Escherichia coli. Bondaryk RP; Paulus H J Biol Chem; 1985 Jan; 260(1):592-7. PubMed ID: 2981222 [TBL] [Abstract][Full Text] [Related]