These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 24970087)

  • 21. A signal-like role for floral humidity in a nocturnal pollination system.
    Dahake A; Jain P; Vogt CC; Kandalaft W; Stroock AD; Raguso RA
    Nat Commun; 2022 Dec; 13(1):7773. PubMed ID: 36522313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Floral CO(2) emission may indicate food abundance to nectar-feeding moths.
    Guerenstein PG; A Yepez E; Van Haren J; Williams DG; Hildebrand JG
    Naturwissenschaften; 2004 Jul; 91(7):329-33. PubMed ID: 15257387
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural Encoding of Odors during Active Sampling and in Turbulent Plumes.
    Huston SJ; Stopfer M; Cassenaer S; Aldworth ZN; Laurent G
    Neuron; 2015 Oct; 88(2):403-18. PubMed ID: 26456047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological organization and topographic mapping of the antennal olfactory sensory neurons in female hawkmoths, Manduca sexta.
    Ghaninia M; Olsson SB; Hansson BS
    Chem Senses; 2014 Oct; 39(8):655-71. PubMed ID: 25092901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator.
    Balao F; Herrera J; Talavera S; Dötterl S
    Phytochemistry; 2011 May; 72(7):601-9. PubMed ID: 21376355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta.
    Goyret J; Markwell PM; Raguso RA
    Proc Natl Acad Sci U S A; 2008 Mar; 105(12):4565-70. PubMed ID: 18212123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moths sense but do not learn flower odors with their proboscis during flower investigation.
    Adam E; Hansson BS; Knaden M
    J Exp Biol; 2021 Sep; 224(17):. PubMed ID: 34427309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Olfactory coding in the turbulent realm.
    Jacob V; Monsempès C; Rospars JP; Masson JB; Lucas P
    PLoS Comput Biol; 2017 Dec; 13(12):e1005870. PubMed ID: 29194457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural encoding of rapidly fluctuating odors.
    Geffen MN; Broome BM; Laurent G; Meister M
    Neuron; 2009 Feb; 61(4):570-86. PubMed ID: 19249277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles.
    Christensen TA; Pawlowski VM; Lei H; Hildebrand JG
    Nat Neurosci; 2000 Sep; 3(9):927-31. PubMed ID: 10966624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antennal lobe processing correlates to moth olfactory behavior.
    Kuebler LS; Schubert M; Kárpáti Z; Hansson BS; Olsson SB
    J Neurosci; 2012 Apr; 32(17):5772-82. PubMed ID: 22539839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reproductive biology of Datura wrightii: the benefits of a herbivorous pollinator.
    Bronstein JL; Huxman T; Horvath B; Farabee M; Davidowitz G
    Ann Bot; 2009 Jun; 103(9):1435-43. PubMed ID: 19287014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.
    Fenske MP; Nguyen LP; Horn EK; Riffell JA; Imaizumi T
    Sci Rep; 2018 Feb; 8(1):2842. PubMed ID: 29434312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the Drosophila antennal lobe.
    Mohamed AAM; Retzke T; Das Chakraborty S; Fabian B; Hansson BS; Knaden M; Sachse S
    Nat Commun; 2019 Mar; 10(1):1201. PubMed ID: 30867415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host plant odors represent immiscible information entities - blend composition and concentration matter in hawkmoths.
    Späthe A; Reinecke A; Haverkamp A; Hansson BS; Knaden M
    PLoS One; 2013; 8(10):e77135. PubMed ID: 24116211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Olfactory interneurons in the brain of the larval sphinx moth Manduca sexta.
    Itagaki H; Hildebrand JG
    J Comp Physiol A; 1990 Aug; 167(3):309-20. PubMed ID: 2231474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroantennogram and single sensillum recording in insect antennae.
    Olsson SB; Hansson BS
    Methods Mol Biol; 2013; 1068():157-77. PubMed ID: 24014360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Olfaction in the Anthropocene: NO
    Chan JK; Parasurama S; Atlas R; Xu R; Jongebloed UA; Alexander B; Langenhan JM; Thornton JA; Riffell JA
    Science; 2024 Feb; 383(6683):607-611. PubMed ID: 38330103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects.
    Yeshurun Y; Sobel N
    Annu Rev Psychol; 2010; 61():219-41, C1-5. PubMed ID: 19958179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris.
    Mertes M; Carcaud J; Sandoz JC
    Sci Rep; 2021 May; 11(1):10947. PubMed ID: 34040068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.