These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24970091)

  • 1. Batteries. Capturing metastable structures during high-rate cycling of LiFePO₄ nanoparticle electrodes.
    Liu H; Strobridge FC; Borkiewicz OJ; Wiaderek KM; Chapman KW; Chupas PJ; Grey CP
    Science; 2014 Jun; 344(6191):1252817. PubMed ID: 24970091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence of concurrent solid-solution and two-phase reactions and the nonequilibrium structural evolution of LiFePO4.
    Sharma N; Guo X; Du G; Guo Z; Wang J; Wang Z; Peterson VK
    J Am Chem Soc; 2012 May; 134(18):7867-73. PubMed ID: 22482702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate-dependent, Li-ion insertion/deinsertion behavior of LiFePO4 cathodes in commercial 18650 LiFePO4 cells.
    Liu Q; He H; Li ZF; Liu Y; Ren Y; Lu W; Lu J; Stach EA; Xie J
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3282-9. PubMed ID: 24521163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.
    Ni H; Liu J; Fan LZ
    Nanoscale; 2013 Mar; 5(5):2164-8. PubMed ID: 23389625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of a metastable crystal phase of Li(x)FePO4 under electrochemical phase transition.
    Orikasa Y; Maeda T; Koyama Y; Murayama H; Fukuda K; Tanida H; Arai H; Matsubara E; Uchimoto Y; Ogumi Z
    J Am Chem Soc; 2013 Apr; 135(15):5497-500. PubMed ID: 23544671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of non-equilibrium lithium incorporation in LiFePO4.
    Malik R; Zhou F; Ceder G
    Nat Mater; 2011 Jul; 10(8):587-90. PubMed ID: 21765400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacity Fading Mechanism of the Commercial 18650 LiFePO
    Liu Q; Liu Y; Yang F; He H; Xiao X; Ren Y; Lu W; Stach E; Xie J
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4622-4629. PubMed ID: 29309119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superstructure in the Metastable Intermediate-Phase Li2/3 FePO4 Accelerating the Lithium Battery Cathode Reaction.
    Nishimura S; Natsui R; Yamada A
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8939-42. PubMed ID: 26074480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model.
    Delmas C; Maccario M; Croguennec L; Le Cras F; Weill F
    Nat Mater; 2008 Aug; 7(8):665-71. PubMed ID: 18641656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries.
    Hess M; Sasaki T; Villevieille C; Novák P
    Nat Commun; 2015 Sep; 6():8169. PubMed ID: 26345306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.
    Wei W; Chen D; Wang R; Guo L
    Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observation of random solid solution zone in LiFePO₄ electrode.
    Niu J; Kushima A; Qian X; Qi L; Xiang K; Chiang YM; Li J
    Nano Lett; 2014 Jul; 14(7):4005-10. PubMed ID: 24823479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally driven metastable solid-solution Li(0.5)FePO4 in nanosized particles and its phase separation behaviors.
    Yoo S; Kang B
    Nanotechnology; 2013 Oct; 24(42):424012. PubMed ID: 24067798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer.
    Shen Y; Pedersen EE; Christensen M; Iversen BB
    Rev Sci Instrum; 2014 Oct; 85(10):104103. PubMed ID: 25362421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium structural dynamics of nanoparticles in LiNi(1/2)Mn(3/2)O4 cathode under operando conditions.
    Singer A; Ulvestad A; Cho HM; Kim JW; Maser J; Harder R; Meng YS; Shpyrko OG
    Nano Lett; 2014 Sep; 14(9):5295-300. PubMed ID: 25148536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of micro-nano hierarchical structured LiFePO₄/C composite with both superior high-rate performance and high tap density.
    Wang M; Yang Y; Zhang Y
    Nanoscale; 2011 Oct; 3(10):4434-9. PubMed ID: 21935524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.