BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 24970142)

  • 1. SUMO Wrestles with Recombination.
    Altmannová V; Kolesár P; Krejčí L
    Biomolecules; 2012 Jul; 2(3):350-75. PubMed ID: 24970142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in SUMO-based regulation of homologous recombination.
    Dhingra N; Zhao X
    Curr Opin Genet Dev; 2021 Dec; 71():114-119. PubMed ID: 34333341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Yin and Yang of the MMS21-SMC5/6 SUMO ligase complex in homologous recombination.
    Potts PR
    DNA Repair (Amst); 2009 Apr; 8(4):499-506. PubMed ID: 19217832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination.
    Silva S; Altmannova V; Eckert-Boulet N; Kolesar P; Gallina I; Hang L; Chung I; Arneric M; Zhao X; Buron LD; Mortensen UH; Krejci L; Lisby M
    DNA Repair (Amst); 2016 Jun; 42():11-25. PubMed ID: 27130983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling DNA-End Resection: An Emerging Task for Ubiquitin and SUMO.
    Himmels SF; Sartori AA
    Front Genet; 2016; 7():152. PubMed ID: 27602047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small ubiquitin-like modifier (SUMO) isoforms and conjugation-independent function in DNA double-strand break repair pathways.
    Hu Y; Parvin JD
    J Biol Chem; 2014 Aug; 289(31):21289-95. PubMed ID: 24966330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO.
    Antoniuk-Majchrzak J; Enkhbaatar T; Długajczyk A; Kaminska J; Skoneczny M; Klionsky DJ; Skoneczna A
    Biochim Biophys Acta Mol Cell Res; 2023 Oct; 1870(7):119526. PubMed ID: 37364618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cervantes and Quijote protect heterochromatin from aberrant recombination and lead the way to the nuclear periphery.
    Ryu T; Bonner MR; Chiolo I
    Nucleus; 2016 Sep; 7(5):485-497. PubMed ID: 27673416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA end resection requires constitutive sumoylation of CtIP by CBX4.
    Soria-Bretones I; Cepeda-García C; Checa-Rodriguez C; Heyer V; Reina-San-Martin B; Soutoglou E; Huertas P
    Nat Commun; 2017 Jul; 8(1):113. PubMed ID: 28740167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage.
    Shima H; Suzuki H; Sun J; Kono K; Shi L; Kinomura A; Horikoshi Y; Ikura T; Ikura M; Kanaar R; Igarashi K; Saitoh H; Kurumizaka H; Tashiro S
    J Cell Sci; 2013 Nov; 126(Pt 22):5284-92. PubMed ID: 24046452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of SUMO modification of human PCNA at stalled replication fork.
    Gali H; Juhasz S; Morocz M; Hajdu I; Fatyol K; Szukacsov V; Burkovics P; Haracska L
    Nucleic Acids Res; 2012 Jul; 40(13):6049-59. PubMed ID: 22457066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intricate SUMO-based control of the homologous recombination machinery.
    Dhingra N; Zhao X
    Genes Dev; 2019 Oct; 33(19-20):1346-1354. PubMed ID: 31575678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair.
    Psakhye I; Jentsch S
    Cell; 2012 Nov; 151(4):807-820. PubMed ID: 23122649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks.
    Ouyang KJ; Woo LL; Zhu J; Huo D; Matunis MJ; Ellis NA
    PLoS Biol; 2009 Dec; 7(12):e1000252. PubMed ID: 19956565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the double-strand break repair pathway in the maintenance of genomic stability.
    Le Guen T; Ragu S; Guirouilh-Barbat J; Lopez BS
    Mol Cell Oncol; 2015; 2(1):e968020. PubMed ID: 27308383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in
    Kramarz K; Mucha S; Litwin I; Barg-Wojas A; Wysocki R; Dziadkowiec D
    Genetics; 2017 May; 206(1):513-525. PubMed ID: 28341648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks.
    Bekker-Jensen S; Mailand N
    FEBS Lett; 2011 Sep; 585(18):2914-9. PubMed ID: 21664912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.