These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 24970227)
1. Decoding F508del misfolding in cystic fibrosis. Wang XR; Li C Biomolecules; 2014 May; 4(2):498-509. PubMed ID: 24970227 [TBL] [Abstract][Full Text] [Related]
2. Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis. Wang C; Protasevich I; Yang Z; Seehausen D; Skalak T; Zhao X; Atwell S; Spencer Emtage J; Wetmore DR; Brouillette CG; Hunt JF Protein Sci; 2010 Oct; 19(10):1932-47. PubMed ID: 20687163 [TBL] [Abstract][Full Text] [Related]
3. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Amico G; Brandas C; Moran O; Baroni D Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31683989 [TBL] [Abstract][Full Text] [Related]
4. VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1. Ren HY; Grove DE; De La Rosa O; Houck SA; Sopha P; Van Goor F; Hoffman BJ; Cyr DM Mol Biol Cell; 2013 Oct; 24(19):3016-24. PubMed ID: 23924900 [TBL] [Abstract][Full Text] [Related]
5. NBD2 Is Required for the Rescue of Mutant F508del CFTR by a Thiazole-Based Molecule: A Class II Corrector for the Multi-Drug Therapy of Cystic Fibrosis. Brandas C; Ludovico A; Parodi A; Moran O; Millo E; Cichero E; Baroni D Biomolecules; 2021 Sep; 11(10):. PubMed ID: 34680050 [TBL] [Abstract][Full Text] [Related]
6. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. Veit G; Roldan A; Hancock MA; Da Fonte DF; Xu H; Hussein M; Frenkiel S; Matouk E; Velkov T; Lukacs GL JCI Insight; 2020 Sep; 5(18):. PubMed ID: 32853178 [TBL] [Abstract][Full Text] [Related]
7. Solubilizing mutations used to crystallize one CFTR domain attenuate the trafficking and channel defects caused by the major cystic fibrosis mutation. Pissarra LS; Farinha CM; Xu Z; Schmidt A; Thibodeau PH; Cai Z; Thomas PJ; Sheppard DN; Amaral MD Chem Biol; 2008 Jan; 15(1):62-9. PubMed ID: 18215773 [TBL] [Abstract][Full Text] [Related]
8. Probing conformational rescue induced by a chemical corrector of F508del-cystic fibrosis transmembrane conductance regulator (CFTR) mutant. Yu W; Kim Chiaw P; Bear CE J Biol Chem; 2011 Jul; 286(28):24714-25. PubMed ID: 21602569 [TBL] [Abstract][Full Text] [Related]
9. Deletion of Phenylalanine 508 in the First Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization. Chong PA; Farber PJ; Vernon RM; Hudson RP; Mittermaier AK; Forman-Kay JD J Biol Chem; 2015 Sep; 290(38):22862-78. PubMed ID: 26149808 [TBL] [Abstract][Full Text] [Related]
10. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Yang H; Ma T Expert Opin Ther Pat; 2015; 25(9):991-1002. PubMed ID: 25971311 [TBL] [Abstract][Full Text] [Related]
11. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation. Gong X; Ahner A; Roldan A; Lukacs GL; Thibodeau PH; Frizzell RA J Biol Chem; 2016 Jan; 291(4):2004-2017. PubMed ID: 26627832 [TBL] [Abstract][Full Text] [Related]
12. An overview on chemical structures as ΔF508-CFTR correctors. Spanò V; Montalbano A; Carbone A; Scudieri P; Galietta LJV; Barraja P Eur J Med Chem; 2019 Oct; 180():430-448. PubMed ID: 31326599 [TBL] [Abstract][Full Text] [Related]
13. Can two wrongs make a right? F508del-CFTR ion channel rescue by second-site mutations in its transmembrane domains. Prins S; Corradi V; Sheppard DN; Tieleman DP; Vergani P J Biol Chem; 2022 Mar; 298(3):101615. PubMed ID: 35065958 [TBL] [Abstract][Full Text] [Related]
14. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy. Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971 [TBL] [Abstract][Full Text] [Related]
15. Deletion of Phe508 in the first nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator increases its affinity for the heat shock cognate 70 chaperone. Scott-Ward TS; Amaral MD FEBS J; 2009 Dec; 276(23):7097-109. PubMed ID: 19878303 [TBL] [Abstract][Full Text] [Related]
16. Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells. Favia M; Mancini MT; Bezzerri V; Guerra L; Laselva O; Abbattiscianni AC; Debellis L; Reshkin SJ; Gambari R; Cabrini G; Casavola V Am J Physiol Lung Cell Mol Physiol; 2014 Jul; 307(1):L48-61. PubMed ID: 24816489 [TBL] [Abstract][Full Text] [Related]
17. A chemical corrector modifies the channel function of F508del-CFTR. Kim Chiaw P; Wellhauser L; Huan LJ; Ramjeesingh M; Bear CE Mol Pharmacol; 2010 Sep; 78(3):411-8. PubMed ID: 20501743 [TBL] [Abstract][Full Text] [Related]
18. Elexacaftor Mediates the Rescue of F508del CFTR Functional Expression Interacting with MSD2. Bongiorno R; Ludovico A; Moran O; Baroni D Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629017 [TBL] [Abstract][Full Text] [Related]
19. Identification of a NBD1-binding pharmacological chaperone that corrects the trafficking defect of F508del-CFTR. Sampson HM; Robert R; Liao J; Matthes E; Carlile GW; Hanrahan JW; Thomas DY Chem Biol; 2011 Feb; 18(2):231-42. PubMed ID: 21338920 [TBL] [Abstract][Full Text] [Related]
20. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants. Chin S; Hung M; Bear CE Cell Mol Life Sci; 2017 Jan; 74(1):57-66. PubMed ID: 27722768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]