These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24970254)
1. CD147 required for corneal endothelial lactate transport. Li S; Nguyen TT; Bonanno JA Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4673-81. PubMed ID: 24970254 [TBL] [Abstract][Full Text] [Related]
2. Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium. Nguyen TT; Bonanno JA Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8086-93. PubMed ID: 21896839 [TBL] [Abstract][Full Text] [Related]
3. Lactate-H⁺ transport is a significant component of the in vivo corneal endothelial pump. Nguyen TT; Bonanno JA Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2020-9. PubMed ID: 22410572 [TBL] [Abstract][Full Text] [Related]
4. CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Schneiderhan W; Scheler M; Holzmann KH; Marx M; Gschwend JE; Bucholz M; Gress TM; Seufferlein T; Adler G; Oswald F Gut; 2009 Oct; 58(10):1391-8. PubMed ID: 19505879 [TBL] [Abstract][Full Text] [Related]
5. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Walters DK; Arendt BK; Jelinek DF Cell Cycle; 2013 Oct; 12(19):3175-83. PubMed ID: 24013424 [TBL] [Abstract][Full Text] [Related]
6. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Le Floch R; Chiche J; Marchiq I; Naiken T; Ilc K; Murray CM; Critchlow SE; Roux D; Simon MP; Pouysségur J Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16663-8. PubMed ID: 21930917 [TBL] [Abstract][Full Text] [Related]
7. Fluid transport by the cornea endothelium is dependent on buffering lactic acid efflux. Li S; Kim E; Bonanno JA Am J Physiol Cell Physiol; 2016 Jul; 311(1):C116-26. PubMed ID: 27225657 [TBL] [Abstract][Full Text] [Related]
8. PGC-1alpha increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4. Benton CR; Yoshida Y; Lally J; Han XX; Hatta H; Bonen A Physiol Genomics; 2008 Sep; 35(1):45-54. PubMed ID: 18523157 [TBL] [Abstract][Full Text] [Related]
9. A CD147-targeting siRNA inhibits the proliferation, invasiveness, and VEGF production of human malignant melanoma cells by down-regulating glycolysis. Su J; Chen X; Kanekura T Cancer Lett; 2009 Jan; 273(1):140-7. PubMed ID: 18778892 [TBL] [Abstract][Full Text] [Related]
10. Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells. Philp NJ; Wang D; Yoon H; Hjelmeland LM Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1716-21. PubMed ID: 12657613 [TBL] [Abstract][Full Text] [Related]
11. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70). Wilson MC; Meredith D; Fox JE; Manoharan C; Davies AJ; Halestrap AP J Biol Chem; 2005 Jul; 280(29):27213-21. PubMed ID: 15917240 [TBL] [Abstract][Full Text] [Related]
12. Knockdown of NBCe1 in vivo compromises the corneal endothelial pump. Liu C; Cheng Q; Nguyen T; Bonanno JA Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):5190-7. PubMed ID: 20445126 [TBL] [Abstract][Full Text] [Related]
13. RNA sequencing uncovers alterations in corneal endothelial metabolism, pump and barrier functions of Slc4a11 KO mice. Ogando DG; Bonanno JA Exp Eye Res; 2022 Jan; 214():108884. PubMed ID: 34871568 [TBL] [Abstract][Full Text] [Related]
14. Ion transport function of SLC4A11 in corneal endothelium. Jalimarada SS; Ogando DG; Vithana EN; Bonanno JA Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):4330-40. PubMed ID: 23745003 [TBL] [Abstract][Full Text] [Related]
15. Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Philp NJ; Ochrietor JD; Rudoy C; Muramatsu T; Linser PJ Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1305-11. PubMed ID: 12601063 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms regulating tissue-specific polarity of monocarboxylate transporters and their chaperone CD147 in kidney and retinal epithelia. Deora AA; Philp N; Hu J; Bok D; Rodriguez-Boulan E Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16245-50. PubMed ID: 16260747 [TBL] [Abstract][Full Text] [Related]
17. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells. Wang Q; Morris ME Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341 [TBL] [Abstract][Full Text] [Related]
18. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Miranda-Gonçalves V; Honavar M; Pinheiro C; Martinho O; Pires MM; Pinheiro C; Cordeiro M; Bebiano G; Costa P; Palmeirim I; Reis RM; Baltazar F Neuro Oncol; 2013 Feb; 15(2):172-88. PubMed ID: 23258846 [TBL] [Abstract][Full Text] [Related]
19. Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. Forero-Quintero LS; Ames S; Schneider HP; Thyssen A; Boone CD; Andring JT; McKenna R; Casey JR; Deitmer JW; Becker HM J Biol Chem; 2019 Jan; 294(2):593-607. PubMed ID: 30446621 [TBL] [Abstract][Full Text] [Related]
20. Corneal Endothelial Pump Coupling to Lactic Acid Efflux in the Rabbit and Mouse. Li S; Kim E; Ogando DG; Bonanno JA Invest Ophthalmol Vis Sci; 2020 Feb; 61(2):7. PubMed ID: 32031579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]