These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24970838)

  • 1. Sensory experience during locomotion promotes recovery of function in adult visual cortex.
    Kaneko M; Stryker MP
    Elife; 2014 Jun; 3():e02798. PubMed ID: 24970838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
    Huh CYL; Abdelaal K; Salinas KJ; Gu D; Zeitoun J; Figueroa Velez DX; Peach JP; Fowlkes CC; Gandhi SP
    J Neurosci; 2020 Jan; 40(3):585-604. PubMed ID: 31767678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enriched binocular experience followed by sleep optimally restores binocular visual cortical responses in a mouse model of amblyopia.
    Martinez JD; Donnelly MJ; Popke DS; Torres D; Wilson LG; Brancaleone WP; Sheskey S; Lin CM; Clawson BC; Jiang S; Aton SJ
    Commun Biol; 2023 Apr; 6(1):408. PubMed ID: 37055505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular visual training to promote recovery from monocular deprivation.
    Murphy KM; Roumeliotis G; Williams K; Beston BR; Jones DG
    J Vis; 2015 Jan; 15(1):15.1.2. PubMed ID: 25572348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual acuity development and plasticity in the absence of sensory experience.
    Kang E; Durand S; LeBlanc JJ; Hensch TK; Chen C; Fagiolini M
    J Neurosci; 2013 Nov; 33(45):17789-96. PubMed ID: 24198369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery from monocular stimulus deprivation amblyopia in the kitten.
    Van Sluyters RC
    Ophthalmology; 1978 May; 85(5):478-88. PubMed ID: 353621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure.
    Montey KL; Quinlan EM
    Nat Commun; 2011; 2():317. PubMed ID: 21587234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo.
    Barnes SJ; Sammons RP; Jacobsen RI; Mackie J; Keller GB; Keck T
    Neuron; 2015 Jun; 86(5):1290-303. PubMed ID: 26050045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-dependent recovery of vision following chronic deprivation amblyopia.
    He HY; Ray B; Dennis K; Quinlan EM
    Nat Neurosci; 2007 Sep; 10(9):1134-6. PubMed ID: 17694050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporally coherent visual stimuli boost ocular dominance plasticity.
    Matthies U; Balog J; Lehmann K
    J Neurosci; 2013 Jul; 33(29):11774-8. PubMed ID: 23864666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion Induces Stimulus-Specific Response Enhancement in Adult Visual Cortex.
    Kaneko M; Fu Y; Stryker MP
    J Neurosci; 2017 Mar; 37(13):3532-3543. PubMed ID: 28258167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of visual training for full recovery from severe amblyopia in adults.
    Eaton NC; Sheehan HM; Quinlan EM
    Learn Mem; 2016 Feb; 23(2):99-103. PubMed ID: 26787781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex.
    Rose T; Jaepel J; Hübener M; Bonhoeffer T
    Science; 2016 Jun; 352(6291):1319-22. PubMed ID: 27284193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tDCS recovers depth perception in adult amblyopic rats and reorganizes visual cortex activity.
    Castaño-Castaño S; Feijoo-Cuaresma M; Paredes-Pacheco J; Morales-Navas M; Ruiz-Guijarro JA; Sanchez-Santed F; Nieto-Escámez F
    Behav Brain Res; 2019 Sep; 370():111941. PubMed ID: 31078617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural mechanisms of recovery following early visual deprivation.
    Mitchell DE; Sengpiel F
    Philos Trans R Soc Lond B Biol Sci; 2009 Feb; 364(1515):383-98. PubMed ID: 18977734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia.
    Frantz MG; Kast RJ; Dorton HM; Chapman KS; McGee AW
    Cereb Cortex; 2016 May; 26(5):1975-85. PubMed ID: 25662716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation.
    McCurry CL; Shepherd JD; Tropea D; Wang KH; Bear MF; Sur M
    Nat Neurosci; 2010 Apr; 13(4):450-7. PubMed ID: 20228806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.