These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 24970865)

  • 1. Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains.
    Lewis JA; Broman AT; Will J; Gasch AP
    Genetics; 2014 Sep; 198(1):369-82. PubMed ID: 24970865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait.
    Stuecker TN; Scholes AN; Lewis JA
    PLoS Genet; 2018 Apr; 14(4):e1007335. PubMed ID: 29649251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations.
    Greetham D; Wimalasena TT; Leung K; Marvin ME; Chandelia Y; Hart AJ; Phister TG; Tucker GA; Louis EJ; Smart KA
    PLoS One; 2014; 9(8):e103233. PubMed ID: 25116161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetics of single-cell protein abundance variation in large yeast populations.
    Albert FW; Treusch S; Shockley AH; Bloom JS; Kruglyak L
    Nature; 2014 Feb; 506(7489):494-7. PubMed ID: 24402228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Variation in
    Sirr A; Scott AC; Cromie GA; Ludlow CL; Ahyong V; Morgan TS; Gilbert T; Dudley AM
    G3 (Bethesda); 2018 Jan; 8(1):239-251. PubMed ID: 29138237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of variation in transcription factor binding in yeast.
    Zheng W; Zhao H; Mancera E; Steinmetz LM; Snyder M
    Nature; 2010 Apr; 464(7292):1187-91. PubMed ID: 20237471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis.
    Swinnen S; Schaerlaekens K; Pais T; Claesen J; Hubmann G; Yang Y; Demeke M; Foulquié-Moreno MR; Goovaerts A; Souvereyns K; Clement L; Dumortier F; Thevelein JM
    Genome Res; 2012 May; 22(5):975-84. PubMed ID: 22399573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.
    Nelson RM; Pettersson ME; Li X; Carlborg Ö
    PLoS One; 2013; 8(11):e79507. PubMed ID: 24223957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance.
    Lewis JA; Elkon IM; McGee MA; Higbee AJ; Gasch AP
    Genetics; 2010 Dec; 186(4):1197-205. PubMed ID: 20855568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance.
    Scholes AN; Stuecker TN; Hood SE; Locke CJ; Stacy CL; Zhang Q; Lewis JA
    BMC Biol; 2024 Jul; 22(1):149. PubMed ID: 38965504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae.
    Granek JA; Murray D; Kayrkçi Ö; Magwene PM
    Genetics; 2013 Feb; 193(2):587-600. PubMed ID: 23172850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production.
    Wohlbach DJ; Rovinskiy N; Lewis JA; Sardi M; Schackwitz WS; Martin JA; Deshpande S; Daum CG; Lipzen A; Sato TK; Gasch AP
    Genome Biol Evol; 2014 Sep; 6(9):2557-66. PubMed ID: 25364804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured association analysis leads to insight into Saccharomyces cerevisiae gene regulation by finding multiple contributing eQTL hotspots associated with functional gene modules.
    Curtis RE; Kim S; Woolford JL; Xu W; Xing EP
    BMC Genomics; 2013 Mar; 14():196. PubMed ID: 23514438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple epistatic DNA variants in a single gene affect gene expression in trans.
    Lutz S; Van Dyke K; Feraru MA; Albert FW
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae.
    Kasavi C; Eraslan S; Oner ET; Kirdar B
    Mol Biosyst; 2016 Feb; 12(2):464-76. PubMed ID: 26661334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Genetic Basis of Mutation Rate Variation in Yeast.
    Gou L; Bloom JS; Kruglyak L
    Genetics; 2019 Feb; 211(2):731-740. PubMed ID: 30504363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress survival in a clinical Saccharomyces cerevisiae isolate is influenced by a major quantitative trait nucleotide.
    Diezmann S; Dietrich FS
    Genetics; 2011 Jul; 188(3):709-22. PubMed ID: 21515583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans-acting genetic variation affects the expression of adjacent genes.
    Van Dyke K; Lutz S; Mekonnen G; Myers CL; Albert FW
    Genetics; 2021 Mar; 217(3):. PubMed ID: 33789351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetics of
    Albert FW; Bloom JS; Siegel J; Day L; Kruglyak L
    Elife; 2018 Jul; 7():. PubMed ID: 30014850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.