These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24971390)

  • 21. Heat transport in the geostrophic regime of rotating Rayleigh-Bénard convection.
    Ecke RE; Niemela JJ
    Phys Rev Lett; 2014 Sep; 113(11):114301. PubMed ID: 25259983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural convection in a porous cavity filled (35%MWCNT-65% Fe
    Gumir FJ; Al-Farhany K; Jamshed W; Tag El Din ESM; Abd-Elmonem A
    Sci Rep; 2022 Oct; 12(1):17794. PubMed ID: 36273100
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free convection of a suspension containing nano-encapsulated phase change material in a porous cavity; local thermal non-equilibrium model.
    Ghalambaz M; Hashem Zadeh SM; Mehryan SAM; Haghparast A; Zargartalebi H
    Heliyon; 2020 May; 6(5):e03823. PubMed ID: 32395643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method.
    Qi C; He Y; Yan S; Tian F; Hu Y
    Nanoscale Res Lett; 2013 Feb; 8(1):56. PubMed ID: 23374509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entropy Generation Analysis and Natural Convection in a Nanofluid-Filled Square Cavity with a Concentric Solid Insert and Different Temperature Distributions.
    Alsabery AI; Ishak MS; Chamkha AJ; Hashim I
    Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh-Bénard convection at very high Rayleigh numbers [corrected].
    Urban P; Hanzelka P; Kralik T; Musilova V; Srnka A; Skrbek L
    Phys Rev Lett; 2012 Oct; 109(15):154301. PubMed ID: 23102312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural Convection within Inversed T-Shaped Enclosure Filled by Nano-Enhanced Phase Change Material: Numerical Investigation.
    Abderrahmane A; Al-Khaleel M; Mourad A; Laidoudi H; Driss Z; Younis O; Guedri K; Marzouki R
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the thermodynamic optimization of naturally convective flow in a corrugated enclosure: The influence of gap spacing and orientation of split baffles.
    Ali A; Ali R; Hendy AS; Altalbe A
    Heliyon; 2024 Aug; 10(15):e34930. PubMed ID: 39144939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
    Zhong JQ; Stevens RJ; Clercx HJ; Verzicco R; Lohse D; Ahlers G
    Phys Rev Lett; 2009 Jan; 102(4):044502. PubMed ID: 19257426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural convection heat transfer in corrugated annuli with H
    Aljabair S; Mohammed AA; Alesbe I
    Heliyon; 2020 Nov; 6(11):e05568. PubMed ID: 33869814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.
    Li L; Shi N; du Puits R; Resagk C; Schumacher J; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026315. PubMed ID: 23005862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Convection of Nanoliquid in a Double-Connected Chamber.
    Pop I; Sheremet MA; Groşan T
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32210154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat transport in Rayleigh-Bénard convection and angular momentum transport in Taylor-Couette flow: a comparative study.
    Brauckmann HJ; Eckhardt B; Schumacher J
    Philos Trans A Math Phys Eng Sci; 2017 Mar; 375(2089):. PubMed ID: 28167575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model.
    Ghalambaz M; Sheremet MA; Pop I
    PLoS One; 2015; 10(5):e0126486. PubMed ID: 25993540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity.
    Varé T; Nouar C; Métivier C
    Phys Rev E; 2017 Oct; 96(4-1):043109. PubMed ID: 29347553
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of magnetic field on MHD mixed convection in lid-driven cavity with heated wavy bottom surface.
    Mahmuda Maya MU; Alam MN; Refaie Ali A
    Sci Rep; 2023 Nov; 13(1):18959. PubMed ID: 37919309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection.
    van der Poel EP; Stevens RJ; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):045303. PubMed ID: 22181218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thickness of the diffusive sublayer in turbulent convection.
    du Puits R; Resagk C; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016307. PubMed ID: 20365460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of the thermal boundary layer for turbulent Rayleigh-Bénard convection of air in a long rectangular enclosure.
    Maystrenko A; Resagk C; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066303. PubMed ID: 17677353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions.
    Yoshikawa HN; Tadie Fogaing M; Crumeyrolle O; Mutabazi I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043003. PubMed ID: 23679509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.