These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24971458)

  • 1. Comparing chemistry to outcome: the development of a chemical distance metric, coupled with clustering and hierarchal visualization applied to macromolecular crystallography.
    Bruno AE; Ruby AM; Luft JR; Grant TD; Seetharaman J; Montelione GT; Hunt JF; Snell EH
    PLoS One; 2014; 9(6):e100782. PubMed ID: 24971458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The application and use of chemical space mapping to interpret crystallization screening results.
    Snell EH; Nagel RM; Wojtaszcyk A; O'Neill H; Wolfley JL; Luft JR
    Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1240-9. PubMed ID: 19018100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening and optimization methods for nonautomated crystallization laboratories.
    Bergfors T
    Methods Mol Biol; 2007; 363():131-51. PubMed ID: 17272840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The X-ray structure of Salmonella typhimurium uridine nucleoside phosphorylase complexed with 2,2'-anhydrouridine, phosphate and potassium ions at 1.86 A resolution.
    Lashkov AA; Zhukhlistova NE; Gabdoulkhakov AH; Shtil AA; Efremov RG; Betzel C; Mikhailov AM
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):51-60. PubMed ID: 20057049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of three commercial sparse-matrix crystallization screens.
    Wooh JW; Kidd RD; Martin JL; Kobe B
    Acta Crystallogr D Biol Crystallogr; 2003 Apr; 59(Pt 4):769-72. PubMed ID: 12657807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A crystallization screen based on alternative polymeric precipitants.
    Grimm C; Chari A; Reuter K; Fischer U
    Acta Crystallogr D Biol Crystallogr; 2010 Jun; 66(Pt 6):685-97. PubMed ID: 20516621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of macromolecular precipitants on phase behavior of monoclonal antibodies.
    Rakel N; Galm L; Bauer KC; Hubbuch J
    Biotechnol Prog; 2015; 31(1):145-53. PubMed ID: 25504581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The MORPHEUS II protein crystallization screen.
    Gorrec F
    Acta Crystallogr F Struct Biol Commun; 2015 Jul; 71(Pt 7):831-7. PubMed ID: 26144227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Crystal Growth for Neutron Macromolecular Crystallography.
    Vahdatahar E; Junius N; Budayova-Spano M
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization of macromolecules.
    Messick T; Marmorstein R
    Curr Protoc Protein Sci; 2004 Feb; Chapter 17():17.4.1-17.4.25. PubMed ID: 18429252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples.
    Snell EH; Lauricella AM; Potter SA; Luft JR; Gulde SM; Collins RJ; Franks G; Malkowski MG; Cumbaa C; Jurisica I; DeTitta GT
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1131-7. PubMed ID: 19020351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.
    Offermann LR; He JZ; Mank NJ; Booth WT; Chruszcz M
    J Struct Funct Genomics; 2014 Mar; 15(1):13-24. PubMed ID: 24452510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing a training set through the visual analysis of crystallization trials. Part I: approximately 150,000 images.
    Snell EH; Luft JR; Potter SA; Lauricella AM; Gulde SM; Malkowski MG; Koszelak-Rosenblum M; Said MI; Smith JL; Veatch CK; Collins RJ; Franks G; Thayer M; Cumbaa C; Jurisica I; Detitta GT
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1123-30. PubMed ID: 19020350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens.
    Chaikuad A; Knapp S; von Delft F
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1627-39. PubMed ID: 26249344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully Autonomous Characterization and Data Collection from Crystals of Biological Macromolecules.
    Hutin S; Van Laer B; Mueller-Dieckmann C; Leonard G; Nurizzo D; Bowler MW
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30958484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for crystallization and structure determination of very large macromolecular assemblies.
    Mueller M; Jenni S; Ban N
    Curr Opin Struct Biol; 2007 Oct; 17(5):572-9. PubMed ID: 17964135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous batch micro-crystallization of proteins from ammonium sulfate.
    Stohrer C; Horrell S; Meier S; Sans M; von Stetten D; Hough M; Goldman A; Monteiro DCF; Pearson AR
    Acta Crystallogr D Struct Biol; 2021 Feb; 77(Pt 2):194-204. PubMed ID: 33559608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of human prostatic acid phosphatase in complex with a phosphate ion and alpha-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insights into inhibitor design.
    Ortlund E; LaCount MW; Lebioda L
    Biochemistry; 2003 Jan; 42(2):383-9. PubMed ID: 12525165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Crystallization.
    McPherson A
    Methods Mol Biol; 2017; 1607():17-50. PubMed ID: 28573568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.