These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 24971467)
1. Response of soil-associated microbial communities to intrusion of coal mine-derived acid mine drainage. Brantner JS; Senko JM Environ Sci Technol; 2014; 48(15):8556-63. PubMed ID: 24971467 [TBL] [Abstract][Full Text] [Related]
2. Impact of acid mine drainage chemistry and microbiology on the development of efficient Fe removal activities. Sharma S; Lee M; Reinmann CS; Pumneo J; Cutright TJ; Senko JM Chemosphere; 2020 Jun; 249():126117. PubMed ID: 32088465 [TBL] [Abstract][Full Text] [Related]
3. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. Senko JM; Wanjugi P; Lucas M; Bruns MA; Burgos WD ISME J; 2008 Nov; 2(11):1134-45. PubMed ID: 18548117 [TBL] [Abstract][Full Text] [Related]
5. An integrated microbiological and electrochemical approach to determine distributions of Fe metabolism in acid mine drainage-induced "iron mound" sediments. Leitholf IM; Fretz CE; Mahanke R; Santangelo Z; Senko JM PLoS One; 2019; 14(3):e0213807. PubMed ID: 30913215 [TBL] [Abstract][Full Text] [Related]
6. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage. Brantner JS; Haake ZJ; Burwick JE; Menge CM; Hotchkiss ST; Senko JM Front Microbiol; 2014; 5():215. PubMed ID: 24860562 [TBL] [Abstract][Full Text] [Related]
7. Characterization of iron-metabolizing communities in soils contaminated by acid mine drainage from an abandoned coal mine in Southwest China. Gao P; Sun X; Xiao E; Xu Z; Li B; Sun W Environ Sci Pollut Res Int; 2019 Apr; 26(10):9585-9598. PubMed ID: 30726542 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Sun W; Xiao E; Krumins V; Dong Y; Xiao T; Ning Z; Chen H; Xiao Q Appl Microbiol Biotechnol; 2016 Oct; 100(19):8523-35. PubMed ID: 27277134 [TBL] [Abstract][Full Text] [Related]
10. Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range. Jew AD; Behrens SF; Rytuba JJ; Kappler A; Spormann AM; Brown GE Geobiology; 2014 Jan; 12(1):20-33. PubMed ID: 24224806 [TBL] [Abstract][Full Text] [Related]
11. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Chen M; Grégoire DS; Bain JG; Blowes DW; Hug LA Appl Environ Microbiol; 2024 Jun; 90(6):e0014324. PubMed ID: 38814057 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage. Nicomrat D; Dick WA; Tuovinen OH Microb Ecol; 2006 Jan; 51(1):83-9. PubMed ID: 16400536 [TBL] [Abstract][Full Text] [Related]
13. [Molecular Research of Acid-Generating Microbial Communities in Abandoned Ores in the Waste Dump of an Iron Mine in Anhui Province]. Du ZR; Hao CB; Pei LX; Wei PF; Zhang Y; Lu YC Huan Jing Ke Xue; 2017 Nov; 38(11):4725-4732. PubMed ID: 29965418 [TBL] [Abstract][Full Text] [Related]
14. Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Sheng Y; Bibby K; Grettenberger C; Kaley B; Macalady JL; Wang G; Burgos WD Appl Environ Microbiol; 2016 Jun; 82(12):3611-3621. PubMed ID: 27084004 [TBL] [Abstract][Full Text] [Related]
15. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647 [TBL] [Abstract][Full Text] [Related]
16. Diversity of the Sediment Microbial Community in the Aha Watershed (Southwest China) in Response to Acid Mine Drainage Pollution Gradients. Sun W; Xiao T; Sun M; Dong Y; Ning Z; Xiao E; Tang S; Li J Appl Environ Microbiol; 2015 Aug; 81(15):4874-84. PubMed ID: 25979900 [TBL] [Abstract][Full Text] [Related]
17. Temperature and nutrients as drivers of microbially mediated arsenic oxidation and removal from acid mine drainage. Tardy V; Casiot C; Fernandez-Rojo L; Resongles E; Desoeuvre A; Joulian C; Battaglia-Brunet F; Héry M Appl Microbiol Biotechnol; 2018 Mar; 102(5):2413-2424. PubMed ID: 29380031 [TBL] [Abstract][Full Text] [Related]
18. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483 [TBL] [Abstract][Full Text] [Related]
19. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: Performance and response of microbial communities to low pH and elevated Fe. Chen H; Xiao T; Ning Z; Li Q; Xiao E; Liu Y; Xiao Q; Lan X; Ma L; Lu F Bioresour Technol; 2020 Dec; 317():123985. PubMed ID: 32805482 [TBL] [Abstract][Full Text] [Related]
20. Role of microbial diversity for sustainable pyrite oxidation control in acid and metalliferous drainage prevention. Ogbughalu OT; Vasileiadis S; Schumann RC; Gerson AR; Li J; Smart RSC; Short MD J Hazard Mater; 2020 Jul; 393():122338. PubMed ID: 32120208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]