BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24971574)

  • 21. Tuning the oxidation state of manganese oxide nanoparticles on oxygen- and nitrogen-functionalized carbon nanotubes for the electrocatalytic oxygen evolution reaction.
    Antoni H; Xia W; Masa J; Schuhmann W; Muhler M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18434-18442. PubMed ID: 28678247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.
    Bulavchenko OA; Vinokurov ZS; Afonasenko TN; Tsyrul'nikov PG; Tsybulya SV; Saraev AA; Kaichev VV
    Dalton Trans; 2015 Sep; 44(35):15499-507. PubMed ID: 26239114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benzene Oxidation with Ozone Over MnO(x)/MSU-H and MnO(x)/Mesoporous-SAPO-34 Catalysts.
    An HB; Park SH; Jhurng SH; Jurng JS; Bae GN; Jeon JK; Park YK
    J Nanosci Nanotechnol; 2015 Jan; 15(1):454-8. PubMed ID: 26328380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled growth of γ-MnO
    Xie J; Wei Y; Song X; Chen Y; Zou Q; Wang M; Xu A; Li X
    J Colloid Interface Sci; 2018 Nov; 529():476-485. PubMed ID: 29945018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of double manganese-cobalt oxides: in situ XRD and TPR study.
    Bulavchenko OA; Gerasimov EY; Afonasenko TN
    Dalton Trans; 2018 Dec; 47(47):17153-17159. PubMed ID: 30468212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of meso-TiO2@MnO(x)-CeO(x)/CNTs with a core-shell structure as DeNO(x) catalysts: promotion of activity, stability and SO2-tolerance.
    Zhang L; Zhang D; Zhang J; Cai S; Fang C; Huang L; Li H; Gao R; Shi L
    Nanoscale; 2013 Oct; 5(20):9821-9. PubMed ID: 23970126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and properties of nanostructured colloidal manganese oxide particles obtained through the thermally controlled transformation of manganese carbonate precursor phase.
    Škapin SD; Čadež V; Suvorov D; Sondi I
    J Colloid Interface Sci; 2015 Nov; 457():35-42. PubMed ID: 26151565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and Properties of Uniform Coated Inorganic Colloidal Particles.
    Haq I; Matijević E
    J Colloid Interface Sci; 1997 Aug; 192(1):104-13. PubMed ID: 9268548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monodisperse manganese oxide nanoparticles: Synthesis, characterization, and chemical reactivity.
    Soejima T; Nishizawa K; Isoda R
    J Colloid Interface Sci; 2018 Jan; 510():272-279. PubMed ID: 28957743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural in situ study of the thermal behavior of manganese dioxide materials: toward selected electrode materials for supercapacitors.
    Ghodbane O; Pascal JL; Fraisse B; Favier F
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3493-505. PubMed ID: 21114252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles.
    An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA
    J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface texture and physicochemical characterization of mesoporous carbon--wrapped Pd-Fe catalysts for low-temperature CO catalytic oxidation.
    Han W; Zhang G; Zhao K; Lu G; Tang Z
    Phys Chem Chem Phys; 2015 Nov; 17(43):29027-35. PubMed ID: 26456796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive and selective electrochemical sensing of L-cysteine based on a caterpillar-like manganese dioxide-carbon nanocomposite.
    Xiao C; Chen J; Liu B; Chu X; Wu L; Yao S
    Phys Chem Chem Phys; 2011 Jan; 13(4):1568-74. PubMed ID: 21103576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of palladium on the reducibility of Mn based materials: correlation with methane oxidation activity.
    Baylet A; Royer S; Labrugère C; Valencia H; Marécot P; Tatibouët JM; Duprez D
    Phys Chem Chem Phys; 2008 Oct; 10(39):5983-92. PubMed ID: 18825286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoporous Mn-Zr composite oxides with a crystalline wall: synthesis, characterization and application.
    Miao Z; Zhao H; Yang J; Zhao J; Song H; Chou L
    Dalton Trans; 2015 Feb; 44(7):2997-3001. PubMed ID: 25612139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Room temperature synthesis of a novel gamma-MnO2 hollow structure for aerobic oxidation of benzyl alcohol.
    Fu X; Feng J; Wang H; Ng KM
    Nanotechnology; 2009 Sep; 20(37):375601. PubMed ID: 19706950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporating Pb
    Hasanpour F; Saien J
    ACS Omega; 2019 Oct; 4(15):16638-16650. PubMed ID: 31616846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MnO
    Kim SH; Park BC; Jeon YS; Kim YK
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32112-32119. PubMed ID: 30168317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries.
    Zhang Z; Wang Y; Tan Q; Zhong Z; Su F
    J Colloid Interface Sci; 2013 May; 398():185-92. PubMed ID: 23489612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turning harmful Mn
    Wang Y; Yang Y; Zhou Y; Jiang F; Zheng Y; Tan W; Yi X; Dang Z
    Sci Total Environ; 2024 May; 926():171709. PubMed ID: 38494016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.