These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2497164)

  • 41. In vivo effect of lipoteichoic acid on biochemical function of peritoneal macrophages.
    Sen V; Nerkar DP; Joshi DS; Kamat AS; Lewis NF
    Indian J Exp Biol; 1986 Mar; 24(3):159-62. PubMed ID: 2426192
    [No Abstract]   [Full Text] [Related]  

  • 42. [Supplementary approach to the differentiation of the spore bacteria, Bacillus subtilis and Bacillus cereus].
    Reznik SR; Sorokulova IB; Kachan AF
    Mikrobiol Zh; 1978; 40(4):448-52. PubMed ID: 102905
    [No Abstract]   [Full Text] [Related]  

  • 43. Postincision steps of photoproduct removal in a mutant of Bacillus cereus 569 that produces UV-sensitive spores.
    Weinberger S; Evenchick Z; Hertman I
    J Bacteriol; 1983 Nov; 156(2):909-13. PubMed ID: 6415041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inactivation of
    Pendyala B; Patras A; Gopisetty VVS; Sasges M; Balamurugan S
    Foodborne Pathog Dis; 2019 Oct; 16(10):704-711. PubMed ID: 31135181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and some characteristics of a calcium-binding protein from Bacillus cereus spores.
    Shyu YT; Foegeding PM
    J Gen Microbiol; 1991 Jul; 137(7):1619-23. PubMed ID: 1955855
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationship between survival, photoproduct production and repair capacity in a variant of Bacillus cereus.
    Johnston GC; Young IE
    Photochem Photobiol; 1974 Sep; 20(3):213-9. PubMed ID: 4213357
    [No Abstract]   [Full Text] [Related]  

  • 47. [Thermodynamic and kinetic characteristics of B.cereus sporal germination].
    Massa MR; Cardillo MR; Tarsi R; Burberi S
    Nuovi Ann Ig Microbiol; 1975; 26(6):450-60. PubMed ID: 823535
    [No Abstract]   [Full Text] [Related]  

  • 48. The inhibition of vegetative cell outgrowth and division from spores of Bacillus cereus T by hen egg albumen.
    Tranter HS; Board RG
    J Appl Bacteriol; 1982 Feb; 52(1):67-73. PubMed ID: 6802792
    [No Abstract]   [Full Text] [Related]  

  • 49. Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance.
    Berg PE; Grecz N
    J Bacteriol; 1970 Aug; 103(2):517-9. PubMed ID: 4988248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria.
    Maclean M; Murdoch LE; MacGregor SJ; Anderson JG
    Photochem Photobiol; 2013; 89(1):120-6. PubMed ID: 22803813
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacillus cereus responses to acid stress.
    Mols M; Abee T
    Environ Microbiol; 2011 Nov; 13(11):2835-43. PubMed ID: 21554514
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced photocatalytic inactivation of bacterial spores on surfaces in air.
    Vohra A; Goswami DY; Deshpande DA; Block SS
    J Ind Microbiol Biotechnol; 2005 Aug; 32(8):364-70. PubMed ID: 16044291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of quaternary ammonium compounds and amine oxides on spores of Bacillus cereus.
    Cupková V; Mlynarcík D; Devínsky F; Lacko I
    Folia Microbiol (Praha); 1981; 26(3):189-95. PubMed ID: 6792009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spores of Microorganisms. XIX. Heat- and UV-resistance of spores of Bacillus cereus produced endotrophically in the presence of beta-2-thienylalanine.
    Weisová H; Vinter V; Stárka J
    Folia Microbiol (Praha); 1966; 11(5):387-91. PubMed ID: 4959876
    [No Abstract]   [Full Text] [Related]  

  • 55. Photoreactivation, photoproduct formation, and deoxyribonucleic acid state in ultraviolet-irradiated sporulating cultures of Bacillus cereus.
    Baillie E; Germaine GR; Murrell WG; Ohye DF
    J Bacteriol; 1974 Oct; 120(1):516-23. PubMed ID: 4214215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response of Bacillus cereus vegetative cells after exposure to repetitive sublethal radiation processing in combination with nisin.
    Ayari S; Dussault D; Hayouni el A; Vu KD; Hamdi M; Lacroix M
    Food Microbiol; 2012 Dec; 32(2):361-70. PubMed ID: 22986202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response of Bacillus cereus to gamma-irradiation in combination with carvacrol or mild heat treatment.
    Ayari S; Dussault D; Millette M; Hamdi M; Lacroix M
    J Agric Food Chem; 2010 Jul; 58(14):8217-24. PubMed ID: 20568774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potentiation by halogen compounds of the lethal action of gamma-radiation on spores of Bacillus cereus.
    Gould GW
    J Gen Microbiol; 1970 Dec; 64(3):289-300. PubMed ID: 4995908
    [No Abstract]   [Full Text] [Related]  

  • 59. Effect of water activities of heating and recovery media on apparent heat resistance of Bacillus cereus spores.
    Coroller L; Leguérinel I; Mafart P
    Appl Environ Microbiol; 2001 Jan; 67(1):317-22. PubMed ID: 11133461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resistance and recovery studies on ultraviolet-irradiated spores of Bacillus pumilus.
    Abshire RL; Bain B; Williams T
    Appl Environ Microbiol; 1980 Apr; 39(4):695-701. PubMed ID: 7377772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.