BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24971707)

  • 1. Aluminum plasmonics for enhanced visible light absorption and high efficiency water splitting in core-multishell nanowire photoelectrodes with ultrathin hematite shells.
    Ramadurgam S; Lin TG; Yang C
    Nano Lett; 2014 Aug; 14(8):4517-22. PubMed ID: 24971707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application.
    Li L; Yu Y; Meng F; Tan Y; Hamers RJ; Jin S
    Nano Lett; 2012 Feb; 12(2):724-31. PubMed ID: 22214175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.
    Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons.
    Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A
    Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting.
    Kargar A; Sun K; Jing Y; Choi C; Jeong H; Jung GY; Jin S; Wang D
    ACS Nano; 2013 Oct; 7(10):9407-15. PubMed ID: 24040832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoted water splitting by efficient electron transfer between Au nanoparticles and hematite nanoplates: a theoretical and experimental study.
    Lei F; Liu H; Yu J; Tang Z; Xie J; Hao P; Cui G; Tang B
    Phys Chem Chem Phys; 2019 Jan; 21(3):1478-1483. PubMed ID: 30607415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
    Li Z; Wu J; Liao L; He X; Huang B; Zhang S; Wei Y; Wang S; Zhou W
    J Colloid Interface Sci; 2022 Nov; 626():879-888. PubMed ID: 35835039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing Water-Splitting Efficiency Using a Zn/Sn-Doped PN Photoelectrode of Pseudocubic α-Fe
    Yang JX; Meng Y; Tseng CM; Huang YK; Lin TM; Wang YM; Deng JP; Wu HC; Hung WH
    Nanoscale Res Lett; 2020 Jun; 15(1):130. PubMed ID: 32542412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective silicon nanowire arrays/WO
    Chen Z; Ning M; Ma G; Meng Q; Zhang Y; Gao J; Jin M; Chen Z; Yuan M; Wang X; Liu JM; Zhou G
    Nanotechnology; 2017 Jul; 28(27):275401. PubMed ID: 28531092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.
    Liu Y; Xu Z; Yin M; Fan H; Cheng W; Lu L; Song Y; Ma J; Zhu X
    Nanoscale Res Lett; 2015 Dec; 10(1):374. PubMed ID: 26415539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.
    Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS
    Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile approach for preparing densely-packed individual p-NiO/n-Fe
    Singh AK; Sarkar D
    Nanoscale; 2018 Jul; 10(27):13130-13139. PubMed ID: 29963674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting.
    Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J
    Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.