These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24971760)
1. Photolysis of chlorantraniliprole and cyantraniliprole in water and soil: verification of degradation pathways via kinetics modeling. Sharma AK; Zimmerman WT; Singles SK; Malekani K; Swain S; Ryan D; Mcquorcodale G; Wardrope L J Agric Food Chem; 2014 Jul; 62(28):6577-84. PubMed ID: 24971760 [TBL] [Abstract][Full Text] [Related]
2. Hydrolysis of chlorantraniliprole and cyantraniliprole in various pH buffer solutions. Sharma AK; Zimmerman WT; Lowrie C; Chapleo S J Agric Food Chem; 2014 Apr; 62(16):3531-6. PubMed ID: 24694259 [TBL] [Abstract][Full Text] [Related]
3. Dissipation kinetics of chlorantraniliprole in soils of sugarcane ecosystem. Ramasubramanian T; Paramasivam M; Salin KP; Jayanthi R Bull Environ Contam Toxicol; 2012 Dec; 89(6):1268-71. PubMed ID: 23064445 [TBL] [Abstract][Full Text] [Related]
4. Development of a nanobody-based ELISA for the detection of the insecticides cyantraniliprole and chlorantraniliprole in soil and the vegetable bok choy. Xu B; Wang K; Vasylieva N; Zhou H; Xue X; Wang B; Li QX; Hammock BD; Xu T Anal Bioanal Chem; 2021 Apr; 413(9):2503-2511. PubMed ID: 33580830 [TBL] [Abstract][Full Text] [Related]
5. Persistence and degradation of cyantraniliprole in soil under the influence of varying light sources, temperatures, moisture regimes and carbon dioxide levels. Kumar N; Gupta S J Environ Sci Health B; 2020; 55(12):1032-1040. PubMed ID: 32811281 [TBL] [Abstract][Full Text] [Related]
6. Persistence and dissipation kinetics of chlorantraniliprole 0.4G in the soil of tropical sugarcane ecosystem. Ramasubramanian T; Paramasivam M; Jayanthi R; Nirmala R Environ Monit Assess; 2016 Jan; 188(1):33. PubMed ID: 26670042 [TBL] [Abstract][Full Text] [Related]
7. Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products. Lavtižar V; van Gestel CA; Dolenc D; Trebše P Chemosphere; 2014 Jan; 95():408-14. PubMed ID: 24125717 [TBL] [Abstract][Full Text] [Related]
8. Residues of cyantraniliprole and its metabolite J9Z38 in rice field ecosystem. Zhang C; Hu X; Zhao H; Wu M; He H; Zhang C; Tang T; Ping L; Li Z Chemosphere; 2013 Sep; 93(1):190-5. PubMed ID: 23800585 [TBL] [Abstract][Full Text] [Related]
9. Influence of Flooding, Salinization, and Soil Properties on Degradation of Chlorantraniliprole in California Rice Field Soils. Redman ZC; Parikh SJ; Hengel MJ; Tjeerdema RS J Agric Food Chem; 2019 Jul; 67(29):8130-8137. PubMed ID: 31287295 [TBL] [Abstract][Full Text] [Related]
10. Impact of Simulated California Rice-Growing Conditions on Chlorantraniliprole Partitioning. Redman ZC; Tjeerdema RS J Agric Food Chem; 2018 Feb; 66(8):1765-1772. PubMed ID: 29437391 [TBL] [Abstract][Full Text] [Related]
11. Quantum Yield for the Aqueous Photochemical Degradation of Chlorantraniliprole and Simulation of Its Environmental Fate in a Model California Rice Field. Redman ZC; Anastasio C; Tjeerdema RS Environ Toxicol Chem; 2020 Oct; 39(10):1929-1935. PubMed ID: 32681738 [TBL] [Abstract][Full Text] [Related]
12. Dissipation of chlorantraniliprole in tomato fruits and soil. Malhat F; Abdallah H; Hegazy I Bull Environ Contam Toxicol; 2012 Mar; 88(3):349-51. PubMed ID: 22086181 [TBL] [Abstract][Full Text] [Related]
13. A retrospective look at anthranilic diamide insecticides: discovery and lead optimization to chlorantraniliprole and cyantraniliprole. Selby TP; Lahm GP; Stevenson TM Pest Manag Sci; 2017 Apr; 73(4):658-665. PubMed ID: 27146435 [TBL] [Abstract][Full Text] [Related]
14. Determination of cyantraniliprole and its major metabolite residues in pakchoi and soil using ultra-performance liquid chromatography-tandem mass spectrometry. Sun J; Feng N; Tang C; Qin D Bull Environ Contam Toxicol; 2012 Oct; 89(4):845-52. PubMed ID: 22933172 [TBL] [Abstract][Full Text] [Related]
15. Residue and toxicity of cyantraniliprole and its main metabolite J9Z38 in soil-earthworm microcosms. Zhang X; Wang X; Liu Y; Fang K; Liu T Chemosphere; 2020 Jun; 249():126479. PubMed ID: 32208218 [TBL] [Abstract][Full Text] [Related]
16. Mobility of 2-amino-4,6-dinitrobenzoic acid, a photodegradation product of TNT in a tropical soil under saturated abiotic conditions. Sheild LD; Lichwa J; Colon EJ; Moravcik P; Ray C J Hazard Mater; 2013 Sep; 260():602-8. PubMed ID: 23827728 [TBL] [Abstract][Full Text] [Related]
17. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Selby TP; Lahm GP; Stevenson TM; Hughes KA; Cordova D; Annan IB; Barry JD; Benner EA; Currie MJ; Pahutski TF Bioorg Med Chem Lett; 2013 Dec; 23(23):6341-5. PubMed ID: 24135728 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of an analytical method to determine Fipronil and its degradation products in soil samples. Flores-Ramírez R; Batres-Esquivel LE; Díaz-Barriga Martínez F; López-Acosta I; Ortiz-Pérez MD Bull Environ Contam Toxicol; 2012 Oct; 89(4):744-50. PubMed ID: 22893178 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator JS-118 in aqueous solutions under abiotic conditions. Hu JY; Liu C; Zhang YC; Zheng ZX Bull Environ Contam Toxicol; 2009 May; 82(5):610-5. PubMed ID: 19165405 [TBL] [Abstract][Full Text] [Related]
20. Daphnid life cycle responses to the insecticide chlorantraniliprole and its transformation products. Lavtižar V; Helmus R; Kools SA; Dolenc D; van Gestel CA; Trebše P; Waaijers SL; Kraak MH Environ Sci Technol; 2015 Mar; 49(6):3922-9. PubMed ID: 25688749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]