BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24971948)

  • 21. The influences of the recycle process on the bacterial community in a pilot scale microalgae raceway pond.
    Erkelens M; Ball AS; Lewis DM
    Bioresour Technol; 2014 Apr; 157():364-7. PubMed ID: 24631152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp.
    Kim G; Bae J; Lee K
    Bioresour Technol; 2016 Apr; 205():274-9. PubMed ID: 26827170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production.
    Huerlimann R; de Nys R; Heimann K
    Biotechnol Bioeng; 2010 Oct; 107(2):245-57. PubMed ID: 20506156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.
    Mishra S; Singh N; Sarma AK
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2253-66. PubMed ID: 26093613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios.
    Ríos SD; Torres CM; Torras C; Salvadó J; Mateo-Sanz JM; Jiménez L
    Bioresour Technol; 2013 May; 136():617-25. PubMed ID: 23567739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The feasibility of biodiesel production by microalgae using industrial wastewater.
    Wu LF; Chen PC; Huang AP; Lee CM
    Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production.
    Mandotra SK; Kumar P; Suseela MR; Ramteke PW
    Bioresour Technol; 2014 Mar; 156():42-7. PubMed ID: 24486936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15.
    Xia L; Ge H; Zhou X; Zhang D; Hu C
    Bioresour Technol; 2013 Sep; 144():261-7. PubMed ID: 23876654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selection of microalgae suitable for culturing with digestate from methane fermentation.
    Khanh N; Kitaya Y; Xiao L; Endo R; Shibuya T
    Environ Technol; 2013; 34(13-16):2039-45. PubMed ID: 24350457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent.
    Xin L; Hong-Ying H; Jia Y
    N Biotechnol; 2010 Feb; 27(1):59-63. PubMed ID: 19969113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.
    Yan D; Lu Y; Chen YF; Wu Q
    Bioresour Technol; 2011 Jun; 102(11):6487-93. PubMed ID: 21474303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal.
    Hu B; Min M; Zhou W; Du Z; Mohr M; Chen P; Zhu J; Cheng Y; Liu Y; Ruan R
    Bioresour Technol; 2012 Dec; 126():71-9. PubMed ID: 23073091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load.
    Ummalyma SB; Sukumaran RK
    Bioresour Technol; 2014 Aug; 165():295-301. PubMed ID: 24703181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment.
    Mohan SV; Devi MP; Mohanakrishna G; Amarnath N; Babu ML; Sarma PN
    Bioresour Technol; 2011 Jan; 102(2):1109-17. PubMed ID: 20864335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production.
    Song M; Pei H; Hu W; Zhang S; Ma G; Han L; Ji Y
    Bioresour Technol; 2014 Jun; 162():129-35. PubMed ID: 24747391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microalgal cultivation with biogas slurry for biofuel production.
    Zhu L; Yan C; Li Z
    Bioresour Technol; 2016 Nov; 220():629-636. PubMed ID: 27599623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass.
    Jena U; Vaidyanathan N; Chinnasamy S; Das KC
    Bioresour Technol; 2011 Feb; 102(3):3380-7. PubMed ID: 20970327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process.
    Prajapati SK; Kumar P; Malik A; Vijay VK
    Bioresour Technol; 2014 Apr; 158():174-80. PubMed ID: 24603490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes.
    Serejo ML; Posadas E; Boncz MA; Blanco S; García-Encina P; Muñoz R
    Environ Sci Technol; 2015 Mar; 49(5):3228-36. PubMed ID: 25675110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.