These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24972001)

  • 1. Microfluidic on-demand droplet merging using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2014 Sep; 14(17):3325-33. PubMed ID: 24972001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pillar-induced droplet merging in microfluidic circuits.
    Niu X; Gulati S; Edel JB; deMello AJ
    Lab Chip; 2008 Nov; 8(11):1837-41. PubMed ID: 18941682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation.
    Collins DJ; Alan T; Helmerson K; Neild A
    Lab Chip; 2013 Aug; 13(16):3225-31. PubMed ID: 23784263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coalescence of Surfactant-Stabilized Adjacent Droplets Using Surface Acoustic Waves.
    Sesen M; Fakhfouri A; Neild A
    Anal Chem; 2019 Jun; 91(12):7538-7545. PubMed ID: 31099234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip droplet production regimes using surface acoustic waves.
    Brenker JC; Collins DJ; Van Phan H; Alan T; Neild A
    Lab Chip; 2016 Apr; 16(9):1675-83. PubMed ID: 27045939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic plug steering using surface acoustic waves.
    Sesen M; Alan T; Neild A
    Lab Chip; 2015 Jul; 15(14):3030-8. PubMed ID: 26079216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Triggered Merging of Surfactant-Stabilized Droplet Pairs Using Traveling Surface Acoustic Waves.
    Bussiere V; Vigne A; Link A; McGrath J; Srivastav A; Baret JC; Franke T
    Anal Chem; 2019 Nov; 91(21):13978-13985. PubMed ID: 31576738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications.
    Rismani Yazdi S; Agrawal P; Morales E; Stevens CA; Oropeza L; Davies PL; Escobedo C; Oleschuk RD
    Anal Chim Acta; 2019 Nov; 1085():107-116. PubMed ID: 31522724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An on-chip, multichannel droplet sorter using standing surface acoustic waves.
    Li S; Ding X; Guo F; Chen Y; Lapsley MI; Lin SC; Wang L; McCoy JP; Cameron CE; Huang TJ
    Anal Chem; 2013 Jun; 85(11):5468-74. PubMed ID: 23647057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I; Tice JD; Ismagilov RF
    Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
    Ali M; Park J
    Ultrason Sonochem; 2023 Feb; 93():106305. PubMed ID: 36706667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic abacus channel for controlling the addition of droplets.
    Um E; Park JK
    Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet manipulation in a microfluidic chamber with acoustic radiation pressure and acoustic streaming.
    Cheung YN; Nguyen NT; Wong TN
    Soft Matter; 2014 Oct; 10(40):8122-32. PubMed ID: 25188227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting.
    Ahmadi F; Samlali K; Vo PQN; Shih SCC
    Lab Chip; 2019 Jan; 19(3):524-535. PubMed ID: 30633267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction.
    Agrawal P; Salomons TT; Chiriac DS; Ross AC; Oleschuk RD
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28327-28335. PubMed ID: 31291086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active microdroplet merging by hydrodynamic flow control using a pneumatic actuator-assisted pillar structure.
    Yoon DH; Jamshaid A; Ito J; Nakahara A; Tanaka D; Akitsu T; Sekiguchi T; Shoji S
    Lab Chip; 2014 Aug; 14(16):3050-5. PubMed ID: 24961178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic droplet handling by bulk acoustic wave (BAW) acoustophoresis.
    Leibacher I; Reichert P; Dual J
    Lab Chip; 2015 Jul; 15(13):2896-905. PubMed ID: 26037897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluoropolymer surface coatings to control droplets in microfluidic devices.
    Riche CT; Zhang C; Gupta M; Malmstadt N
    Lab Chip; 2014 Jun; 14(11):1834-41. PubMed ID: 24722827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A light-induced dielectrophoretic droplet manipulation platform.
    Park SY; Kalim S; Callahan C; Teitell MA; Chiou EP
    Lab Chip; 2009 Nov; 9(22):3228-35. PubMed ID: 19865729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays.
    Zheng B; Tice JD; Ismagilov RF
    Anal Chem; 2004 Sep; 76(17):4977-82. PubMed ID: 15373431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.