These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24972001)

  • 21. Surface acoustic wave digital microfluidics with surface wettability gradient.
    Zhang Y; Yang Y
    Lab Chip; 2024 Jun; 24(13):3226-3232. PubMed ID: 38780220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing.
    Babahosseini H; Misteli T; DeVoe DL
    Lab Chip; 2019 Jan; 19(3):493-502. PubMed ID: 30623951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting.
    Hong J; Lee SJ
    Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplets merging through wireless ultrasonic actuation.
    Nayak PP; Kar DP; Bhuyan S
    Ultrasonics; 2016 Jan; 64():83-8. PubMed ID: 26299402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.
    Zagnoni M; Cooper JM
    Lab Chip; 2009 Sep; 9(18):2652-8. PubMed ID: 19704980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging.
    Nan L; Mao T; Shum HC
    Microsyst Nanoeng; 2023; 9():24. PubMed ID: 36910256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment.
    Wang H; Liu Z; Kim S; Koo C; Cho Y; Jang DY; Kim YJ; Han A
    Lab Chip; 2014 Mar; 14(5):947-56. PubMed ID: 24402640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical Tweezer for Droplet Transportation, Extraction, Merging and DNA Analysis.
    Shahid A; Chong S; Mahony J; Deen MJ; Selvaganapathy PR
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active or Passive On-Demand Droplet Merging in a Microfluidic Valve-Based Trap.
    Babahosseini H; Misteli T; DeVoe DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5350-5353. PubMed ID: 30441545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets.
    Sgro AE; Chiu DT
    Lab Chip; 2010 Jul; 10(14):1873-7. PubMed ID: 20467690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional numerical simulation and experimental investigation of boundary-driven streaming in surface acoustic wave microfluidics.
    Chen C; Zhang SP; Mao Z; Nama N; Gu Y; Huang PH; Jing Y; Guo X; Costanzo F; Huang TJ
    Lab Chip; 2018 Dec; 18(23):3645-3654. PubMed ID: 30361727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic and optical systems for the on-demand generation and manipulation of single femtoliter-volume aqueous droplets.
    Lorenz RM; Edgar JS; Jeffries GD; Chiu DT
    Anal Chem; 2006 Sep; 78(18):6433-9. PubMed ID: 16970318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis.
    Hunt TP; Issadore D; Westervelt RM
    Lab Chip; 2008 Jan; 8(1):81-7. PubMed ID: 18094765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmable Droplet Microfluidics Based on Machine Learning and Acoustic Manipulation.
    Yiannacou K; Sharma V; Sariola V
    Langmuir; 2022 Sep; 38(38):11557-11564. PubMed ID: 36099548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface acoustic wave enabled pipette on a chip.
    Sesen M; Devendran C; Malikides S; Alan T; Neild A
    Lab Chip; 2017 Jan; 17(3):438-447. PubMed ID: 27995242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.